Skip to main content
Log in

Electrical and dielectric properties of polymer composite based on vanadium dioxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Samples of a polymer composite based on polypropylene and vanadium dioxide VO2 with the volume concentration from 0 to 1 were investigated. It was shown that the electrical conductivity of composites has the percolation-like character, and the current–voltage characteristics are S-shaped. In the temperature dependence of the electrical resistance of the composites samples, a sharp resistance decrease was detected at the temperature of the semiconductor–metal phase transition in VO2, sufficient for use in critical thermistor elements. It was established that the variance of the dielectric permittivity in the range of frequencies 105−107 Hz can be interpreted as part of the Maxwell’s mechanism of migration polarization associated with the separation of free charge carriers in vanadium dioxide particles in the semiconducting state. It was shown that the dependence of the low-frequency dielectric permittivity on the volume concentration of the filler can be interpreted in terms of a statistical mixture model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Cui, X. Wang, Y. Zhoua et al., Synthesis of vanadium dioxide thin films on conducting oxides and metal–insulator transition characteristics. J. Crystal Growth 338, 96–102 (2012). doi:10.1016/j.jcrysgro.2011.10.025

    Article  Google Scholar 

  2. H. Kizuka, T. Yagi, J. Jia et al., Temperature dependence of thermal conductivity of VO2 thin films across metal–insulator transition. Jap. J. Appl. Phys. 54(5), 053201 (2015). doi:10.7567/JJAP.54.053201

    Article  Google Scholar 

  3. W. Bruckner, H. Opperman, W. Reihelt, J.I. Terukow, F.A. Tschudnowski, E. Wolf, Vanadiumoxide: Darstellung, Eigenschaften, Anwendung. (Akademie-Verlag, Berlin, 1983)

    Google Scholar 

  4. A.I. Ivon, V.R. Kolbunov, I.M. Chernenko, Stability of electrical properties of vanadium dioxide based ceramics. J. Eur. Ceram. Soc. 19, 1883–1888 (1999)

    Article  Google Scholar 

  5. J.M. Atkin, S. Berweger, E.K. Chavez, M.B. Raschke, Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition. Phys. Rev. B 85, 020101(R) (2012). doi:10.1103/PhysRevB.85.020101

    Article  Google Scholar 

  6. С Alfred-Duplan, J. Musso, J.-R. Gavarri, C. Cesari, Variable electrical properties in composites: application to vanadium dioxide pigments in a polyethylene host. J. Sol. State Chem. 10(1), 6–14 (1994). doi:10.1006/jssc.1994.1127

    Article  Google Scholar 

  7. M.K. Kerimov, M.A. Kurbanov, I.S. Sultanahmedova et al., Varistor effect in polymer-semiconductor composites. Semiconductors 44(7), 934–942 (2010). doi:10.1134/S1063782610070134

    Article  Google Scholar 

  8. V.V. Turov, P.P. Gorbik, V.M. Ogenko et al., Influence of tetraethylammonium bromide on phase inhomogeneity of disperse vanadium dioxide particles in matrix of polyethylene glycol. App. Surf. Sci. 166, 492–496 (2000). doi:10.1016/S0169-4332(00)00481-5

    Article  Google Scholar 

  9. Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polymer. J. 38(9), 1887–1897 (2002). doi:10.1016/S0014-3057(02)00064-2

    Article  Google Scholar 

  10. J. Aneli, G. Zaikov, O Mukbaniani, Electric conductivity of polymer composites at mechanical relaxation. Chem. Chem. Technol. 5(2), 187–190 (2011)

    Google Scholar 

  11. Y.Q. Tan, L.J. Fang, J.L. Xiao et al., Grafting of copolymers onto graphene by miniemulsion polymerization for conductive polymer composites: improved electrical conductivity and compatibility induced by interfacial distribution of grapheme. Polymer. Chem. 4(10), 2939–2944 (2013). doi:10.1039/C3PY00164D

    Article  Google Scholar 

  12. H. Pang, L. Xu, D.X. Yan, Z.M. Li, Conductive polymer composites with segregated structures. Progress Polymer. Sci. 3(11), 1908–1933 (2014). doi:10.1016/j.progpolymsci.2014.07.007

    Article  Google Scholar 

  13. H.R. Seung, K. Seil, K. Han et al., Highly conductive polymer composites incorporated with electrochemically exfoliated graphene fillers. RSC Adv. 46(5), 36456–36460 (2015). doi:10.1039/C5RA04202J

    Google Scholar 

  14. A.M. Hashimov, S.M. Hasanli, R.N. Mehdizadeh et al., Nonlinear resistor based on a polymer-ceramic composition. Tech. Phys. 52(8), 1086–1088 (2007). doi:10.1134/S1063784207080208

    Article  Google Scholar 

  15. AY Lyashkov, AS Tonkoshkur, Varistor composites with a positive temperature coefficient of resistance. Tech. Phys. 56(3), 427–428 (2011). doi:10.1134/S1063784211030121

    Article  Google Scholar 

  16. K.V. Antonova, V.R. Kolbunov, A.S. Tonkoshkur, Structure and properties of polymer composites based on vanadium dioxide. J. Polymer Res. 21(5), 1–5 (2014). doi:10.1007/s10965-014-0422-7

    Article  Google Scholar 

  17. A.I. Ivon, I.M. Chernenko, V.R. Kolbunov, Process for preparing of vanadium dioxide. Ukraine Patent 40041 A (UA) №99010384, 16 July 2001

  18. I.М. Afanasov, V.А. Morozov, A.V. Kepman et al., Preparation, electrical and thermal properties of new exfoliated graphite-based composites. Carbon 47(1), 263–270 (2009). doi:10.1016/j.carbon.2008.10.004

    Article  Google Scholar 

  19. C. Garzón, H. Palza, Electrical behavior of polypropylene composites melt mixed with carbon-based particles: Effect of the kind of particle and annealing process. Compos. Sci. Tech. 99, 117–123 (2014). doi:10.1016/j.compscitech.2014.05.018

    Article  Google Scholar 

  20. J. Frohlich, W. Niedermeier, H.D. Luginsland, The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos. Part A Appl. Sci. Manuf. 36(4), 449–460 (2005). doi:10.1016/j.compositesa.2004.10.004

    Article  Google Scholar 

  21. A. Montazeri, R. Naghdabadi, Investigation of the interphase effects on the mechanical behavior of carbon nanotube polymer composites by multiscale modeling. J. Appl. Polymer Sci. 117(1), 361–367 (2010). doi:10.1002/app.31460

    Google Scholar 

  22. S. Kirkpatrick, Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973). doi:10.1103/RevModPhys.45.574

    Article  Google Scholar 

  23. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors. (Springer-Verlag, Berlin, 1983)

    Google Scholar 

  24. B. Brunson, Hopping conductivity and charge transport in low density polyethylene. Utah State University: all Graduate Theses and Dissertations. Paper 562, 2010

  25. A.S. Tonkoshkur, A.Y. Lyashkov, A.V. Degtyaryov, Size effects in electrical properties of carbon-polypropylene composites. Ukr. J. Phys. 61(11), 1108–1016 (2016)

    Article  Google Scholar 

  26. C.N. Berglund, H.J. Guggenheim, Electronic properties of VO2 near the semiconductor-metal transition. Phys. Rev. 185(3), 1022–1033 (1969). doi:10.1103/PhysRev.185.1022

    Article  Google Scholar 

  27. V.R. Kolbunov, A.I. Ivon, I.M. Chernenko, Conductivity of VO2-based ceramics. J. Mater. Sci. 17, 57–62 (2006). doi:10.1007/s10854-005-5142-7

    Google Scholar 

  28. S.S. Dukhin, V.N. Shilov, Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes, (Übersetzt aus dem Russischen von D. Ledermann; Herausgeber: P. Greenberg), J. (Wiley and Sons, New York, 1974)

    Google Scholar 

  29. G. Bànhegyi, Numerical analysis of complex dielectric mixture formulae. Colloid Polymer Sci. 266(1), 11–28 (1988). doi:10.1007/BF01451527

    Article  Google Scholar 

  30. E.P. Moore, Polypropylene Handbook. Polymerization, Characterization, Properties, Processing, Applications. (Hanser Publishers, New York, 1996)

    Google Scholar 

  31. S.-G. Shin, I.-K. Kwo, Effect of temperature on the dielectric properties of carbon black-filled polyethylene matrix composites below the percolation threshold. Electron. Mater. Lett. 7(3), 249–254 (2011). doi:10.1007/s13391-011-0913-1

    Article  Google Scholar 

  32. I.A. Morozov, A.L. Svistkov, G. Heinrich, B. Lauke, Structure of the carbon-black-particles framework in filled elastomer materials. Polymer Sci. Series A. 49(3), 292–299 (2007). doi:10.1134/S0965545X07030091

    Article  Google Scholar 

  33. A.V. Degtyar’ov, A.S. Tonkoshkur, Electric conductivity of PTCR polyethylene-graphite composites. Ukr. J. Phys. 52(9), 863–867 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Kolbunov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolbunov, V.R., Tonkoshkur, A.S. & Gomilko, I.V. Electrical and dielectric properties of polymer composite based on vanadium dioxide. J Mater Sci: Mater Electron 28, 8322–8328 (2017). https://doi.org/10.1007/s10854-017-6547-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6547-9

Keywords

Navigation