Skip to main content
Log in

Effect of complexing agent on the chemically deposited ZnS thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc sulfide (ZnS) thin films have been deposited onto fluorine doped tin oxide and microscopic glass substrates from an aqueous alkaline reaction by chemical bath deposition. The effect of concentrations of hydrazine hydrate (HyH) (complexing agent) on the deposit is studied. X-ray analysis confirm the growth of nanocrystalline ZnS thin films with reflections (111), (220) and (311) correspond to cubic crystalline phase. TEM results support the growth of cubic ZnS layers. The energy band gap was successfully tailored from 2.77 to 3.80 eV. Photoluminescence study indicates a strong band-edge emission with some defect like vacancies. It was also noticed that HyH plays an important role on the nucleation. The remarkable improvement in the growth rate of ZnS thin films have been observed upon increasing the contents of HyH. Nearly stoichiometric ZnS layer was obtained upon annealing prepared with 2.5 M HyH. The crystallinity was found to be increased upon annealing the layers. The ideality factor for the ZnS layers prepared with 0 and 1.0 M HyH were obtained ~1.71 and 1.24, respectively. The capacitance–voltage plots behave according to Schottky–Mott theory. The doping concentrations ~1017 and 1018 cm−3 were calculated for the layers deposited with 0 and 1.0 M HyH, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Goudarzi, G.M. Aval, R. Sahraei, H. Ahmadpoor, Thin Solid Films 516, 4953 (2008)

    Article  Google Scholar 

  2. C. Ma, D. Moore, J. Le, Z.L. Wang, Adv. Mater. 15, 228 (2003)

    Article  Google Scholar 

  3. C. Lu, Z. Cui, Z. Li, B. Yang, J. Shen, J. Mater. Chem. 13, 526 (2003)

    Article  Google Scholar 

  4. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovolt. Res. Appl. 19, 894 (2011)

    Article  Google Scholar 

  5. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res Appl. 21, 1 (2013)

    Article  Google Scholar 

  6. D. Hariskos, S. Spiering, M. Powalla, Thin Solid Films 480–481, 99 (2005)

    Article  Google Scholar 

  7. T. Nakada, M. Hongo, E. Hayashi, Thin Solid Films 431–432, 242 (2003)

    Article  Google Scholar 

  8. G.L. Agawane, S.W. Shin, M.S. Kim, M.P. Suryawanshi, K.V. Gurava, A.V. Moholkar, J.Y. Lee, J.H. Yun, P.S. Patil, J.H. Kim, Curr. Appl. Phys. 13, 850 (2013)

    Article  Google Scholar 

  9. A. Ennaoui, M. Weber, R. Scheer, H. J. Lewerenz, Sol. Energy Mater. Sol. Cells 54, 277 (1998)

    Article  Google Scholar 

  10. W. Eiselea, A. Ennaouia, P. Schubert-Bischoffa, M. Giersiga, C. Pettenkofera, J. Krausera, M. Lux-Steinera, S. Zweigartb, F. Karg, Sol. Energy Mater. Sol. Cells 75, 17 (2003)

    Article  Google Scholar 

  11. F. Engelhardt, L. Bornemann, M. Kontges, Th. Meyer, J. Parisi, E. Pschorr-Schoberer, B. Hahn, W. Gebhardt, W. Riedl, U. Rau, Prog. Photovolt. Res. Appl. 7, 423 (1999)

    Article  Google Scholar 

  12. B. Mari, M. Mollar, D. Soro, R. Henriquez, R. Scherebler, H. Gomez, Int. J. Electrochem. Sci. 8, 3510 (2013)

    Google Scholar 

  13. G. Gordillo, C. Calderlon, Sol. Energy Mater. Sol. Cells 77, 163 (2003)

    Article  Google Scholar 

  14. P. Vasekar, T. Dhakal, L. Ganta, D. Vanhart, S. Desu. Thin Solid Films 524, 86 (2012)

    Article  Google Scholar 

  15. S. Yano, R. Schroeder, B. Ullrich, R.H. Sakai, Thin Solid Films 423, 273 (2003)

    Article  Google Scholar 

  16. R. Zhang, B. Wang, L. Wei, Mater. Chem. Phys. 112, 557 (2008)

    Article  Google Scholar 

  17. E.Y.M. Lee, N.H. Tran, R.N. Lamb, Appl. Surf. Sci. 241, 493 (2005)

    Article  Google Scholar 

  18. Y.S. Kim, S.J. Yun, Appl. Surf. Sci. 229, 105 (2004)

    Article  Google Scholar 

  19. E. Bacaksiz, O. Gorur, M. Tomakin, E. Yanmaz, M. Altunba, Mater. Lett. 61, 5239 (2007)

    Article  Google Scholar 

  20. N.I. Kovtyukhova, E.V. Buzaneva, C.C. Waraksa, T.E. Mallouk, Mater. Sci. Eng. B 69, 411 (2000)

    Article  Google Scholar 

  21. N. Fathy, R. Kobayashi, M. Ichimura, Mater. Sci. Eng. B 107, 271 (2004)

    Article  Google Scholar 

  22. J.M. Dafia, J. Herrero, J. Electrochem. Soc. 141, 1 (1994)

    Article  Google Scholar 

  23. K. Ahn, J.H. Jeon, S.Y. Jeong, J.M. Kim, H.S. Ahn, J.P. Kim, E.D. Jeong, C.R. Cho, Curr. Appl. Phys. 12, 1465 (2012)

    Article  Google Scholar 

  24. H.Y. Lu, S.Y. Chu, S.S. Tan, J. Cryst. Growth 269, 385 (2004)

    Article  Google Scholar 

  25. P. Prathap, N. Revathi, Y.P. Venkata Subbaiah, K.T. Ramakrishna Reddy, R.W. Miles, J. Phys. Cond. Matter 20, 035205 (2008)

    Article  Google Scholar 

  26. K. Nagamani, N. Revathi, P. Prathap, Y. Lingappa, K.T. Ramakrishna Reddy, Curr. Appl. Phys. 12, 380 (2012)

    Article  Google Scholar 

  27. N. Karar, F. Singh, B.R. Mehta, J. Appl. Phys. 95, 656 (2004)

    Article  Google Scholar 

  28. L.T. Chiem, L. Huynh, J. Ralston, D.A. Beattie, J. Colloid. Interface Sci. 297, 54 (2006)

    Article  Google Scholar 

  29. G. Murugadoss, J. Lumin. 131, 2216 (2011)

    Article  Google Scholar 

  30. B.G. Streetmann, S.K. Banerjee, Solid State Electronic Devices, 6th edn. (PHI Learning Pvt. Ltd., New Delhi, 2006), p. 229

  31. A. Vijayakumar, T. Du, K.B. Sundaram, Appl. Surf. Sci. 242, 168 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the DST (SERI), DST/TM/SERI/FR/124(G), DRDO, (ERIP/ER/10003866/M/01/1388) and BARTI for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandu B. Chaure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londhe, P.U., Rohom, A.B., Bhand, G.R. et al. Effect of complexing agent on the chemically deposited ZnS thin film. J Mater Sci: Mater Electron 28, 5207–5214 (2017). https://doi.org/10.1007/s10854-016-6177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6177-7

Keywords

Navigation