Skip to main content
Log in

Application of graphene quantum dots as green homogenous nanophotocatalyst in the visible-light-driven photolytic process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Environmental pollution has become one of the greatest problems worldwide, and photocatalysts have attracted a great deal of attention as one solution to this problem. In the present study, we report a novel environmentally friendly property of graphene quantum dots (GQDs) as efficient nano-materials for the degradation of organic pollutant dyes based on the photocatalytic behavior of GQDs under visible-light irradiation. GQD samples were derived from citric acid by a pyrolysis procedure. The synthesized GQDs were characterized by various techniques including transmission electron microscopy, UV–Vis absorption, Raman spectroscopy, fluorescence spectroscopy, and zeta potential measurements. The photocatalytic degradation of Celestine Blue (CB) was studied using GQDs under visible light irradiation. The effect of pH value, contacting time, dosage of GQDs, and initial dye concentration on the degradation kinetics of CB was systematically investigated. MS analyses were conducted to determine the degradation products evolving during the photocatalytic degradation. The possible mechanisms of degradation of CB based on GQDs under visible light are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.L. Kostedt IV, J. Drwiega, D.W. Mazyck, S. Lee, W. Sigmund, C. Wu, P. Chadik, Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants. Environ. Sci. Technol. 39, 8052–8056 (2005)

    Article  Google Scholar 

  2. M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu, D. Fang, H. Sun, L. Fan, M. Han, C. Liu, S. Yang, Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem 22, 7461–7467 (2012)

    Article  Google Scholar 

  3. M. J. Benotti, R. A. Trenholm, B. J. Vanderford, J. C. Holady, B. D. Stanford, S. A. Snyder, Pharmaceuticals and endocrine disrupting compounds in US drinking water, Environ. Sci. Technol. 43, 597–603 (2009)

    Article  Google Scholar 

  4. W. Konickia, K. Cendrowski, X. Chen, E. Mijowska, Application of hollow mesoporous carbon nanospheres as an high effective adsorbent for the fast removal of acid dyes from aqueous solutions. Chem. Eng. J. 228, 824–833 (2013)

    Article  Google Scholar 

  5. M.A. Rauf, M.A. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276, 13–27 (2011)

    Article  Google Scholar 

  6. H.R. Rajabi, M. Farsi, Study of capping agent effect on the structural, optical and photocatalytic properties of zinc sulfide quantum dots. Mater. Sci. Semicon. Proc. 48, 14–22 (2016)

    Article  Google Scholar 

  7. H.R. Rajabi, F. Shahrezaei, M. Farsi, Zinc sulfide quantum dots as powerful and efficient nanophotocatalysts for the removal of industrial pollutant. J. Mater. Sci. 27, 9297–9305 (2016)

    Google Scholar 

  8. H.R. Rajabi, H. Arjmand, H. Kazemdehdashti, M. Farsi, A comparison investigation on photocatalytic activity performance and adsorption efficiency for the removal of cationic dye: Quantum dots vs. magnetic nanoparticles. J. Environ. Chem. Eng. 4, 2830–2840 (2016)

    Article  Google Scholar 

  9. T. Soltani, M.H. Entezari, Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of Rhodamine B under solar light irradiation. Chem. Eng. J. 223, 145–154 (2013)

    Article  Google Scholar 

  10. O. Bechambi, S. Sayadi, W. Najjar, Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: Effect of operational parameters and photodegradation mechanism. J. Ind. Eng. Chem. 32, 201–210 (2015)

    Article  Google Scholar 

  11. K. Li, C. Donga, Y. Zhang, H. Weib, F. Zhao, Q. Wan, Ag–AgBr/CaWO4 composite microsphere as an efficient photocatalyst for degradation of Acid Red 18 under visible light irradiation: Affecting factors, kinetics and mechanism. J. Mol. Catal. A 394, 105–113 (2014)

    Article  Google Scholar 

  12. O. Bechambi, A. Touati, S. Sayadi, W. Najjar, Effect of cerium doping on the textural, structural and optical properties of zinc oxide: Role of cerium and hydrogen peroxide to enhance the photocatalytic degradation of endocrine disrupting compounds. Mater. Sci. Semicon. Proc. 39, 807–816 (2015)

    Article  Google Scholar 

  13. H.R. Rajabi, O. Khani, M. Shamsipur, V. Vatanpour, High-performance pure and Fe3 +–ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J. Hazard. Mater. 250–251, 370–378 (2013)

    Article  Google Scholar 

  14. M. Shamsipur, H.R. Rajabi, Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: Effect of ferric ion doping. Spectrochim. Acta Part A 22, 260–267 (2014)

    Article  Google Scholar 

  15. H.R. Rajabi, M. Farsi, Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: Synthesis, characterization, and application for dye decolorization. J. Mol. Catal. A 399, 53–61 (2015)

    Article  Google Scholar 

  16. R. Wang, B. Li, L. Dong, F. Zhang, M. Fan, L. Zhou, Photocatalytic activity of CdTe quantum Dots encapsulated in zeolite Y. Mate. Lett. 135, 99–102 (2014)

    Article  Google Scholar 

  17. X.M. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1(3), 203–212 (2008)

    Article  Google Scholar 

  18. S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49(38), 6726–6744 (2010)

    Article  Google Scholar 

  19. J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48(31), 3686–3699 (2012)

    Article  Google Scholar 

  20. Y. Dong, H. Pang, S. Ren, C. Chen, Y. Chi, T. Yu, Etching singlewall carbon nanotubes into green and yellow single-layer graphene quantum dots, Carbon 64, 245–51 (2013)

    Article  Google Scholar 

  21. K. Habiba, V.I. Makarov, J., M.J. Avalos, Guinel, B.R. Weiner, G. Morell, Luminescent graphene quantum dots fabricated by pulsed laser synthesis. Carbon 64, 341–350 (2013)

    Article  Google Scholar 

  22. M. Xie, Y. Su, X. Lu, Y. Zhang, Z. Yang, Y. Zhang, Blue and green photoluminescence graphene quantum dots synthesized from carbon fibers. Mater. Lett. 93, 161–4 (2013)

    Article  Google Scholar 

  23. H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing. Mater. Today 16 (2013) 433–442

    Article  Google Scholar 

  24. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5, 4015–4039 (2013)

    Article  Google Scholar 

  25. Y. Fazli, S. M. Pourmortazavi, I. Kohsari, M. Sadeghpour Karimi, M. Tajdari Synthesis, characterization and photocatalytic property of nickel sulfide nanoparticles. J. Mater. Sci. 27, 7192–7199 (2016)

    Google Scholar 

  26. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Norouzi, F. Faridbod, M. Sadeghpour Karimi, Statistically optimized synthesis of dyspersium tungstate nanoparticles as photocatalyst. J. Mater. Sci. 27 12860–12868 (2016)

    Google Scholar 

  27. K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani, S.M. Pourmortazavi, F. Ahmadi, H.R. Naderi, M.R. Ganjali, Facile chemical synthesis of cobalt tungstates nanoparticles as high performance supercapacitor. J. Mater. Sci. Mater. 27 4541–4550 (2016)

    Article  Google Scholar 

  28. J. Li, N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A Review. Catal. Sci. Technol. 5 1360–1384 (2014)

    Article  Google Scholar 

  29. S.K. Bhunia, N.R. Jana, Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colourless endocrine disruptors. ACS Appl. Mater. Interfaces 6, 20085–20092 (2014)

    Article  Google Scholar 

  30. L. Liu, H. Bai, J. Liu, D.D. Sun, Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J. Hazard. Mater 261, 214–223 (2013)

    Article  Google Scholar 

  31. Z. Wang, J. Xia, C. Zhou, B. Via, Y. Xia, F. Zhang, Y. Li, L. Xia, J. Tang, Synthesis of strongly green-photoluminescent graphene quantum dots for drug carrier. Colloids Surf. B. 112, 192–196 (2013)

    Article  Google Scholar 

  32. Z. Fan, S. Li, F. Yuan, L. Fan, Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv. 5, 19773–19789 (2015)

    Article  Google Scholar 

  33. L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic Dirac billiard in graphene quantum dots. Science 320(5874), 356–358 (2008)

    Article  Google Scholar 

  34. M. Bacon, S.J. Bradley, T. Nann, Graphene Quantum Dots. Part. Part. Syst. Charact 31, 415–428 (2014)

    Article  Google Scholar 

  35. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012)

    Article  Google Scholar 

  36. D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv. Mater 22, 734–738 (2010)

    Article  Google Scholar 

  37. Y. Sun, S. Wang, C. Li, P. Luo, L. Tao, Y. Wei, G. Shi, Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Chem. Phys 15, 9907–9913 (2013)

    Google Scholar 

  38. P. Borker, A.V. Salker, Photocatalytic degradation of textile azo dye over Ce1–xSnxO2 series. Mater. Sci. Eng. B 133, 55–60 (2006)

    Article  Google Scholar 

  39. X. Yan, X. Cui, B. Li, L. Li, Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Lett. 10, 1869–1873 (2010)

    Article  Google Scholar 

  40. K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010)

    Article  Google Scholar 

  41. B. Konkena, S. Vasudeva, Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J. Phys. Chem. Lett 3, 867–872 (2012)

    Article  Google Scholar 

  42. M.C. Gutierrez, M. Pepio, M. Crespi, Electrochemical oxidation of reactive dyes: Method validation and application, Color Technol. 118, 1–5 (2002)

    Article  Google Scholar 

  43. K. Li, X. Luo, X. Lin, F. Qia, P. Wu, Novel NiCoMnO4 thermocatalyst for low-temperature catalytic degradation of methylene blue. J. Mol. Catal. A 383–384, 1–9 (2014)

    Google Scholar 

  44. Z. Yu, S.S.C. Chuang, Probing methylene blue photocatalytic degradation by adsorbed ethanol with in situ IR. J. Phys. Chem. C 111, 13813–13820 (2007)

    Article  Google Scholar 

  45. H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Graphene–SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight, Nanotechnology. 23, 355705 (2012)

    Article  Google Scholar 

  46. L. Ai, Y. Zeng, Hierarchical porous NiO architectures as highly recyclable adsorbents for effective removal of organic dye from aqueous solution. Chem. Eng. J. 215–216, 269–278 (2013)

    Article  Google Scholar 

  47. Y. Ju, S. Yang, Y. Ding, C. Sun, A. Zhang, L. Wang, Microwave-assisted rapid photocatalytic degradation of malachite green in TiO2 suspensions: Mechanism and pathways. J. Phys. Chem. A 112, 11172–11117 (2008)

    Article  Google Scholar 

  48. K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, Visible light-driven photocatalytic degradation of Rhodamine B over NaBiO3: Pathways and mechanism. J. Phys. Chem. A. 113, 10024–10032 (2009)

    Article  Google Scholar 

  49. H. Al-Ekabi, N. Serpone, Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. J. Phys. Chem 92, 5726–5731 (1988)

    Article  Google Scholar 

  50. A.R. Khataee, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes, J. Mol. Catal. A. 328, 8–26 (2010)

    Article  Google Scholar 

  51. O. Bechambi, M. Chalbi, W. Najjara, S. Sayadi, Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity. Appl. Surf. Sci 347, 414–420 (2015)

    Article  Google Scholar 

  52. J. Wang, Y. Guo, B. Liu, X. Jin, L. Liu, R. Xu, Y. Kong, B. Wang, Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes. Ultrason. Sonochem 18(1), 177–183 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahmoud Roushani or Hamid Reza Rajabi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 431 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roushani, M., Mavaei, M., Daneshfar, A. et al. Application of graphene quantum dots as green homogenous nanophotocatalyst in the visible-light-driven photolytic process. J Mater Sci: Mater Electron 28, 5135–5143 (2017). https://doi.org/10.1007/s10854-016-6169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6169-7

Keywords

Navigation