Skip to main content
Log in

Single-molecule devices: materials, structures and characteristics

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This review article provides a brief survey of materials, structures and current state-of-the-art techniques used to measure the charge conduction characteristics of single molecules. Single molecules have been found to exhibit several unique functionalities including rectification, negative differential resistance and electrical bistable switching, all of which are necessary building blocks for the development and configuration of molecular devices into circuits. Conjugated organic molecules have received considerable interest for their low fabrication cost, three dimensional stacking and mechanical flexibility. Furthermore, the ability of molecules to self-assemble into well-defined structures is imperative for the fabrication of molecule based circuits. The theoretical formalisms are presented for studying single-molecule Coulomb blockade effects, ballistic transport in a molecular chain and electromagnetic coupling between a surface-plasmon field and a single molecule. Moreover, the experimental current–voltage results are discussed using basic principles of carrier transport mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

(Adapted from Ref. [23])

Fig. 3

(Adapted from Ref. [23])

Fig. 4

(Adapted from Ref. [23])

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

(Adapted from Ref. [111])

Similar content being viewed by others

References

  1. H. Sadeghi, S. Sangtarash, C.J. Lambert, Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes. Beilstein J. Nanotechnol. 6, 1413–1420 (2015)

    Article  Google Scholar 

  2. J. Hihath, B. Xu, P. Zhang, N.J. Tao, Study of single-nucleotide polymorphisms by means of electrical conductance measurements, in Proceedings of the National Academy of Sciences of the United States of America, vol. 102 (2005), pp. 16979–16983

    Article  Google Scholar 

  3. X. Xiao, B. Xu, N.J. Tao, Changes in the conductance of single peptide molecules upon metal-ion binding. Angew. Chem. Int. Ed. 43, 6148–6152 (2004)

    Article  Google Scholar 

  4. A. Aviram, M.A. Ratner, Molecular rectifier. Chem. Phys. Lett. 29, 277–283 (1974)

    Article  Google Scholar 

  5. G. Zhang, M.A. Ratner, M.G. Reuter, Is molecular rectification caused by asymmetric electrode couplings or by a molecular bias drop? J. Phys. Chem. C 119, 6254–6260 (2015)

    Article  Google Scholar 

  6. Y. Xue, M.A. Ratner, Theoretical principles of single-molecule electronics: a chemical and mesoscopic view. Int. J. Quantum Chem. 102, 911–924 (2005)

    Article  Google Scholar 

  7. Y. Selzer, D.L. Allara, Single-molecule electrical junctions. Annu. Rev. Phys. Chem. 57, 593–623 (2006)

    Article  Google Scholar 

  8. B.A. Mantooth, P.S. Weiss, Fabrication, assembly, and characterization of molecular electronic components. Proc. IEEE 91, 1785–1802 (2003)

    Article  Google Scholar 

  9. W.Y. Wang, T.H. Lee, M.A. Reed, Electronic transport in molecular self-assembled monolayer devices. Proc. IEEE 93, 1815–1824 (2005)

    Article  Google Scholar 

  10. R.M. Metzger, Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003)

    Article  Google Scholar 

  11. B. Mukherjee, A.J. Pal, Rectification in molecular assemblies of donor–acceptor monolayers. Chem. Phys. Lett. 416, 289–292 (2005)

    Article  Google Scholar 

  12. Z. Li, B. Han, G. Meszaros, I. Pobelov, T. Wandlowski et al., Two dimensional assembly and local redox-activity of molecular hybrid structures in an electrochemical environment. Faraday Discuss. 131, 121–143 (2006)

    Article  Google Scholar 

  13. X.H. Qiu, G.V. Nazin, W. Ho, Mechanisms of reversible conformational transitions in a single molecule. Phys. Rev. Lett. 93, 196806–196809 (2004)

    Article  Google Scholar 

  14. N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, M.C. Hersam, Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett. 4, 55–59 (2004)

    Article  Google Scholar 

  15. L. Venkataraman, J.E. Klare, I.W. Tam, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald, Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006)

    Article  Google Scholar 

  16. N. Atodiresei, J. Brede, P. Lazić, V. Caciuc, G. Hoffmann, R. Wiesendanger, S. Blügel, Design of the local spin polarization at the organic-ferromagnetic interface. Phys. Rev. Lett. 105, 066601–066604 (2010)

    Article  Google Scholar 

  17. L. Bogani, W. Wernsdorfer, Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008)

    Article  Google Scholar 

  18. S. Sanvito, Molecular spintronics. Chem. Soc. Rev. 40, 3336–3355 (2011)

    Article  Google Scholar 

  19. R. Landauer, Conductance determined by transmission: probes and quantised constriction resistance. J. Phys. Condens. Matter 1, 8099–8110 (1989)

    Google Scholar 

  20. K. Takayanagi, Quantized conductance of gold nanowire studied by UHV electron microscope with STM, in Proceedings of the 7th International Symposium, World Scientific Publishing Co., Singapore (2002), pp. 27–30

  21. J. M. Van Ruitenbeek, Experiments on conductance at the atomic scale, in Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, Springer (2000), pp. 35–50

  22. L.P. Kouwenhoven, C.M. Marcus, P.L. Mceuen, S. Tarucha, R.M. Westervelt, N.S. Wingreen, in Electron Transport in Quantum Dots, ed. by L.L. Sohn, L.P. Kouwenhoven, G. Schon. Mesoscopic Electron Transport, Applied Sciences, vol. 345 (Kluwer Academic, Dordrecht, 1997)

  23. J. Park, Electron Transport in Single Molecule Transistors, PhD Thesis, University of California, Berkeley (2003)

  24. A.V. Tivanski, J.E. Bemis, B.B. Akhremitchev, H. Liu, G.C. Walker, Adhesion forces in conducting probe atomic force microscopy. Langmuir 19, 1929–1934 (2003)

    Article  Google Scholar 

  25. T.A. Fulton, G.J. Dolan, Observation of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett. 59, 109–112 (1987)

    Article  Google Scholar 

  26. D.H. Chae, J.F. Berry, S. Jung, F.A. Cotton, C.A. Murillo, Z. Yao, Vibrational excitations in single trimetal-molecule transistors. Nano Lett. 6, 165–168 (2006)

    Article  Google Scholar 

  27. S.J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H.J. Dai, Quantum interference and ballistic transmission in nanotube electron waveguide. Phys. Rev. Lett. 87, 106801–106804 (2001)

    Article  Google Scholar 

  28. J.G. Javey, Q. Wang, M. Lundstrom, H.J. Dai, Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003)

    Article  Google Scholar 

  29. Z.A.K. Durrani, M.A. Raq, Electronic transport in silicon nanocrystals and nanochains. Microelectron. Eng. 86, 456466 (2009)

    Article  Google Scholar 

  30. J. Park, A.N. Pasupathy, J.I. Goldsmith et al., Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002)

    Article  Google Scholar 

  31. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park, Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002)

    Article  Google Scholar 

  32. Y. Meir, N.S. Wingreen, P.A. Lee, Transport through a strongly interacting electron system: theory of periodic conductance oscillations. Phys. Rev. Lett. 66, 3048–3051 (1991)

    Article  Google Scholar 

  33. R. Landauer, in Localization, Interaction and Transport Phenomena, ed. by B. Kramer, G. Bergmann, Y. Bruynseraede. Springer Series in Solid State Sciences, vol. 61 (Springer, New York, 1985)

    Google Scholar 

  34. U. Meirav, M.A. Kastner, S.J. Wind, Single-electron charging and periodic conductance resonances in GaAs nanostructures. Phys. Rev. Lett. 65, 771–774 (1990)

    Article  Google Scholar 

  35. S.K. Lyo, D.H. Huang, Multisublevel magnetoquantum conductance in single and coupled double quantum wires. Phys. Rev. B 64, Article ID 115320 (2001)

  36. S.K. Lyo, D.H. Huang, Temperature-dependent magnetoconductance in quantum wires: effect of phonon scattering. Phys. Rev. B 68, Article ID 115317 (2003)

  37. S.K. Lyo, D.H. Huang, Effect of electron-electron scattering on the conductance of a quantum wire studied with the Boltzman transport equation. Phys. Rev. B 73, Article ID 205336 (2006)

  38. D.H. Huang, S.K. Lyo, G. Gumbs, Bloch oscillation, dynamical localization, and optical probing of electron gases in quantum-dot superlattices in high electric fields. Phys. Rev. B 79, Article ID 155308 (2009)

  39. S.K. Lyo, D.H. Huang, Quantized magneto-thermopower in tunnel-coupled ballistic channels: sign reversal and oscillations. J. Phys. Condens. Matter 16, 3379–3384 (2004)

    Google Scholar 

  40. P. Streda, Quantised thermopower of a channel in the ballistic regime. J. Phys. Condens. Matter 1, L1025–L1027 (1989)

    Google Scholar 

  41. L.D. Wellems, D.H. Huang, T.A. Leskova, A.A. Maradudin, Optical spectrum and electromagnetic-field distribution at double-groove metallic surface gratings. J. Appl. Phys. 106, Article ID 053705 (2009)

  42. D.H. Huang, M. Easter, G. Gumbs, A.A. Maradudin, S.-Y. Lin, D.A. Cardimona, X. Zhang, Resonant scattering of surface plasmon polaritons by dressed quantum dots. Appl. Phys. Lett. 104, Article ID 251103 (2014)

  43. D.H. Huang, M. Easter, L.D. Wellems, H. Mozer, G. Gumbs, D.A. Cardimona, A.A. Maradudin, Dynamic and static control of the optical phase of guided p-polarized light for near-field focusing at large angles of incidence. J. Appl. Phys. 114, Article ID 033106 (2013)

  44. L.D. Wellems, D.H. Huang, T.A. Leskova, A.A. Maradudin, Nanogroove array on thin metallic film as planar lens with tunable focusing. Phys. Lett. A 376, 216220 (2012)

    Article  Google Scholar 

  45. D.H. Huang, M. Easter, G. Gumbs, A.A. Maradudin, S.-Y. Lin, D.A. Cardimona, X. Zhang, Controlling quantum-dot light absorption and emission by a surface-plasmon field. Opt. Express 22, 27576–27605 (2014)

    Article  Google Scholar 

  46. A.A. Maradudin, D.L. Mills, Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness. Phys. Revi. B 11, 1392–1415 (1975)

    Article  Google Scholar 

  47. B. Xu, X. Li, X. Xiao, H. Sakaguchi, N.J. Tao, Electromechanical and conductance switching properties of single oligothiophene molecules. Nano Lett. 5, 1491–1495 (2005)

    Article  Google Scholar 

  48. X. Xiao, B. Xu, N.J. Tao, Conductance titration of single-peptide molecules. J. Am. Chem. Soc. 126, 53705371 (2004)

    Google Scholar 

  49. W. Wang, T. Lee, M.A. Reed, Elastic and inelastic electron tunneling in alkane self-assembled monolayers. J. Phys. Chem. B 108, 18398–18407 (2004)

    Article  Google Scholar 

  50. J.G. Kushmerick, J. Lazorcik, C.H. Patterson, R. Shashidhar, D.S. Seferos, G.C. Bazan, Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004)

    Article  Google Scholar 

  51. Y.C. Chen, M. Zwolak, M. Di Ventra, Local heating in nanoscale conductors. Nano Lett. 3, 16911694 (2003)

    Google Scholar 

  52. B. Kim, J.M. Beebe, Y. Jun, X.Y. Zhu, C.D. Frisbie, Correlation between HOMO alignment and contact resistance in molecular junctions: aromatic thiols versus aromatic isocyanides. J. Am. Chem. Soc. 128, 4970–4971 (2006)

    Article  Google Scholar 

  53. L. Scudiero, D.E. Barlow, U. Mazur, K.W. Hipps, Scanning tunneling microscopy, orbital-mediated tunneling spectroscopy, and UV photoelectron spectroscopy of metal(II) tetraphenylporphyrins deposited from vapour. J. Am. Chem. Soc. 123, 4073–4080 (2001)

    Article  Google Scholar 

  54. A. Alessandrini, M. Salerno, S. Frabboni, P. Facci, Single-metalloprotein wet biotransistor. Appl. Phys. Lett. 86, Article ID 133902 (2005)

  55. A.G. Hansen, H. Wackerbarth, J.U. Nielsen, J. Zhang, A.M. Kuznetsov, J. Ulstrup, Nanoscale and single-molecule interfacial electron transfer. J. Electrochem. 39, 108–117 (2003)

    Google Scholar 

  56. R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. Van Hemert, J.M. Ruitenbeek, Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002)

    Article  Google Scholar 

  57. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Conductance of a molecular junction. Science 278, 252–254 (1997)

    Article  Google Scholar 

  58. A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V.B. Engelkes, C.D. Frisbie, Comparison of electronic transport measurements on organic molecules. Adv. Mater. 15, 18811890 (2003)

    Article  Google Scholar 

  59. J. Tomfohr, G. Ramachandran, O.F. Sankey, S.M. Lindsay, Making contacts to single molecules: are we nearly there yet? in Introducing Molecular Electronics (Springer, Berlin, 2005)

    Google Scholar 

  60. M. Ayub, A. Ivanov, J. Hong, P. Kuhn, E. Instuli, J. B. Edel, T. Albrecht, Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing. J. Phys. Condens. Matter 22, Article ID 454128 (2010)

  61. J.Y. Son, H. Song, Molecular scale electronic devices using single molecules and molecular monolayers. Curr. Appl. Phys. 13, 1157–1171 (2013)

    Article  Google Scholar 

  62. J.K. Gimzewski, C. Joachim, Nanoscale science of single molecules using local probes. Science 283, 1683–1688 (1999)

    Article  Google Scholar 

  63. Y. Selzer, M.A. Cabassi, T.S. Mayer, D.L. Allara, Thermally activated conduction in molecular junctions. J. Am. Chem. Soc. 126, 4052–4053 (2004)

    Article  Google Scholar 

  64. L.E. Hall, J.R. Reimers, N.S. Hush, K. Silverbrook, Formalism, analytical model, and a priori Greens-function-based calculations of the currentvoltage characteristics of molecular wires. J. Chem. Phys. 112, 1510–1521 (2000)

    Article  Google Scholar 

  65. M.D. Ventra, S.T. Pantelides, N.D. Lang, First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett. 84, 979–982 (2000)

    Article  Google Scholar 

  66. Y. Ren, W.W. Yu, S.M. Frolov, J.A. Folk, W. Wegscheider, Zero-bias anomaly of quantum point contacts in the low-conductance limit. Phys. Rev. B 82, 045313–045317 (2010)

    Article  Google Scholar 

  67. N. Agrait, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–380 (2003)

    Article  Google Scholar 

  68. J.M. Krans, J.J.M. van Ruitenbeek, V.V. Fisun, I.K. Yanson, L.J. de Jongh, The signature of conductance quantization in metallic point contacts. Nature 375, 767–769 (1995)

    Article  Google Scholar 

  69. E. Scheer, N. Agraït, J.C. Cuevas et al., The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394, 154–157 (1998)

    Article  Google Scholar 

  70. F. Moresco, Manipulation of large molecules by low-temperature STM: model systems for molecular electronics. Phys. Rep. 399, 175–225 (2004)

    Article  Google Scholar 

  71. X.D. Cui, A. Primak, X. Zarate et al., Reproducible measurement of single-molecule conductivity. Science 294, 571–574 (2001)

    Article  Google Scholar 

  72. M. Herz, F.J. Giessib, J. Mannhart, Probing the shape of atoms in real space. Phys. Rev. B 68, 045301–045307 (2003)

    Article  Google Scholar 

  73. R.P. Andres, T. Bein, M. Dorogi, Coulomb staircase at room temperature in a self-assembled molecular nanostructure. Science 272, 1323–1325 (1996)

    Article  Google Scholar 

  74. G.K. Ramachandran, J.K. Tomfohr, J. Li et al., Electron transport properties of a carotene molecule in a metal-(single molecule)-metal junction. J. Phys. Chem. B 107, 6162–6169 (2003)

    Article  Google Scholar 

  75. M.P. Samanta, W. Tian, S. Datta, J.I. Henderson, C.P. Kubiak, Electronic conduction through organic molecules. Phys. Rev. B 53, R7626–R7629 (1996)

    Article  Google Scholar 

  76. T.M. Reichert, H. Butt, H. Gross, STM of metal embedded and coated DNA and DNA-protein complexes. J. Microscopy 182, 169–176 (1996)

    Article  Google Scholar 

  77. F.A. Armstrong, Electron transfer and coupled processes in protein film voltammetry. Biochem. Soc. Trans. 27, 206–210 (1999)

    Article  Google Scholar 

  78. E.P. Friis, J.E.T. Andersen, Y.I. Kharkats et al., An approach to long-range electron transfer mechanisms in metalloproteins: in situ scanning tunneling microscopy with submolecular resolution, in Proceedings of the National Academy of Sciences of the United States of America, 96, 1379–1384 (1999)

    Article  Google Scholar 

  79. H. Sumi, Electron flow through metalloproteins. Biochim. Biophys. Acta 1797, pp. 1563–1572 (2010)

    Article  Google Scholar 

  80. D.D. Dunlap, R. Garca, E. Schabtach, C. Bustamante, Masking generates contiguous segments of metal-coated and bare DNA for scanning tunneling microscope imaging, in Proceedings of the National Academy of Sciences of the United States of America, vol 90, pp. 7652–7655 (1993)

    Article  Google Scholar 

  81. H.-W. Fink, C. Schöenberger, Electrical conduction through DNA molecules. Nature 398, 407–410 (1999)

    Article  Google Scholar 

  82. D. Porath, A. Bezryadin, S. de Vries, C. Dekkar, Direct measurement of electrical transport through DNA molecules. Nature 403, 635–638 (2000)

    Article  Google Scholar 

  83. A.Y. Kasumov, M. Kociak, S. Gueron et al., Proximity-induced superconductivity in DNA. Science 291, 280–282 (2001)

    Article  Google Scholar 

  84. I. Kratochvílová, K. Král, M. Bunček et al., Scanning tunneling spectroscopy study of DNA conductivity. Cent. Eur. J. Phys. 6, 422–426 (2008)

    Google Scholar 

  85. T.A. Taton, C.A. Mirkin, R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000)

    Article  Google Scholar 

  86. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  87. J.V. Lauritsen, F. Besenbacher, Model catalyst surfaces investigated by scanning tunneling microscopy. Adv. Catal. 50, 97–147 (2006)

    Google Scholar 

  88. R.A. Wassel, G.M. Credo, R.R. Fuierer, D.L. Feldheim, C.B. Gorman, Attenuating negative differential resistance in an electroactive self-assembled monolayer-based junction. J. Am. Chem. Soc. 126, 295–300 (2004)

    Article  Google Scholar 

  89. P.G. Piva, G.A. DiLabio, J.L. Pitters et al., Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005)

    Article  Google Scholar 

  90. M.A. Reed, Inelastic electron tunneling spectroscopy. Mater. Today 11, 4650 (2008)

    Article  Google Scholar 

  91. B.Q. Xu, X.Y. Xiao, N.J. Tao, Measurement of single molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165 (2003)

    Article  Google Scholar 

  92. G. Leatherman, E.N. Durantini, D. Gust et al., Carotene as a molecular wire: conducting atomic force microscopy. J. Phys. Chem. B 103, 4006–4010 (1999)

    Article  Google Scholar 

  93. D.J. Wold, C.D. Frisbie, Formation of metalmoleculemetal tunnel junctions: microcontacts to Alkanethiol monolayers with a conducting AFM tip. J. Am. Chem. Soc. 122, 2970–2971 (2000)

    Article  Google Scholar 

  94. O.H. Willemsen, M.M. Snel, A. Cambi, J. Greve, B.G. de Grooth, C.G. Figdor, Biomolecular interactions measured by atomic force microscopy. Biophys. J. 79, 3267–3281 (2000)

    Article  Google Scholar 

  95. M. Pfreundschuh, D.M. Martin, E. Mulvihill, S. Wegmann, D.J. Muller, Multiparametric high-resolution imaging of native proteins by force-distance curvebased AFM. Nat. Protoc. 9, 1113–1130 (2014)

    Article  Google Scholar 

  96. K.I. Hohmura, Y. Itokazu, S.H. Yoshimura et al., Atomic force microscopy with carbon nanotube probe resolves the subunit organization of protein complexes. J. Microscopy 49, 415–421 (2000)

    Article  Google Scholar 

  97. A.T. Wooley, C.L. Cheung, J.H. Hafner, C.M. Lieber, Structural biology with carbon nanotube AFM probes. Chem. Biol. 7, R193–R204 (2000)

    Article  Google Scholar 

  98. A.T. Woolley, C. Guillemette, C.L. Cheung, D.E. Housman, C.M. Lieber, Direct haplotyping of kilobase-size DNA using carbon nanotube probes. Nat. Biotechnol. 18, 760–763 (2000)

    Article  Google Scholar 

  99. J. Ouyang, C.-W. Chu, C. Szmanda, L. Ma, Y. Yang, Programmable polymer thin film and nonvolatile memory device. Nat. Mater. 3, 918–922 (2004)

    Article  Google Scholar 

  100. C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones II, J.M. Tour, Nanoscale metal/self-assembled monolayer/metal heterostructures. Appl. Phys. Lett. 71, 611–613 (1997)

    Article  Google Scholar 

  101. C. Dekker, Solid-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007)

    Article  Google Scholar 

  102. J. Clarke, H.C. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley, Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009)

    Article  Google Scholar 

  103. M. Wanunu, T. Dadosh, V. Ray, J. Jin, L. McReynolds, M. Drndić, Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010)

    Article  Google Scholar 

  104. Y. Wang, D. Zheng, Q. Tan, M.X. Wang, L.Q. Gu, Nanopore-based detection of circulating micro-RNAs in lung cancer patients. Nat. Nanotechnol. 6, 668–674 (2011)

    Article  Google Scholar 

  105. R. Wei, V. Gatterdam, R. Wieneke, R. Tampé, U. Rant, Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotechnol. 7, 257–263 (2012)

    Article  Google Scholar 

  106. P. Xie, Q. Xiong, Y. Fang, Q. Qing, C.M. Lieber, Local electrical potential detection of DNA by nanowirenanopore sensors. Nat. Nanotechnol. 7, 119–125 (2012)

    Article  Google Scholar 

  107. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999)

    Article  Google Scholar 

  108. K. Slowinski, H.K.Y. Fong, M. Majda, Mercury-mercury tunneling junctions. 1. Electron tunneling across symmetric and asymmetric Alkanethiolate bilayers. J. Am. Chem. Soc. 121, 7257–7261 (1999)

    Article  Google Scholar 

  109. M.A. Rampi, O.J.A. Schueller, G.M. Whitesides, Alkanethiol self-assembled monolayers as the dielectric of capacitors with nanoscale thickness. Appl. Phys. Lett. 72, 1781–1783 (1998)

    Article  Google Scholar 

  110. Y. Selzer, A. Salomon, D. Cahen, Effect of molecule-metal electronic coupling on through-bond hole tunneling across metal-organic monolayer-semiconductor junctions. J. Am. Chem. Soc. 124, 2886–2887 (2002)

    Article  Google Scholar 

  111. B. Mukherjee, A.J. Pal, Write-once-read-many-times (WORM) memory applications in a monolayer of donor/acceptor supramolecule. Chem. Mater. 19, 1382–1387 (2007)

    Article  Google Scholar 

  112. D.H. Huang, Q. Niu, P.R. Antoniewicz, Periodic conductance resonance in a constricted channel. J. Phys. Condens. Matter 3, 9989–9994 (1991)

    Google Scholar 

  113. D.H. Huang, P.M. Alsing, T. Apostolova, D.A. Cardimona, Coupled energy-drift and force-balance equations for high-field hot-carrier transport. Phys. Rev. B 71, Article ID 195205 (2005)

  114. S. Schmitt-Rink, D.S. Chemla, H. Haug, Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors. Phys. Rev. B 37, 941–955 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under Grant Number FA 9550-15-1-0123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danhong Huang.

Appendices

Appendix 1: Coupling of a quantum dot to contacts

If we include the coupling \(\Gamma _c\) of a quantum dot to two electrodes, Eq. (1) will be modified to [112]

$$\begin{aligned} \mu _{N+1}=E_{N+1}+\frac{(N+1/2)e^2}{C}+\Gamma _c\,{\mathcal N}_L(\mu _0)\ . \end{aligned}$$
(10)

Here, C represents the capacitance of a quantum dot and \({\mathcal N}_L(\mu _0)\) is the average linear density of electrons in one-dimensional (1D) electrodes. In addition, \(\{\mu _{N+1}\}\) in Eq. (10) is the resonant levels, which connect to \(\mu _0\) (electrode chemical potential) only through \(\mu _0\) dependence in \({\mathcal N}_L(\mu _0)\). Consequently, from Eq. (10) we find

$$ \frac{\partial \mu _{N+1}(\mu _0)}{\partial \mu_0}=\Gamma_c \, \frac{\partial{\mathcal{N}}_L(\mu_0)}{\partial \mu_0} \equiv \Gamma_c\,{\mathcal{G}}_L(\mu _0), $$
(11)

where \({\mathcal G}_L(\mu _0)\) is the density of states of electrons in 1D electrodes. After we take the electron subband edge as an zero-energy point, the gate potential \(eV_g\) becomes just the difference \(\delta \mu _0\) between the fixed substrate chemical potential and \(\mu _0\). In this way, we are able to simply write down \(\delta \mu _0=\gamma e\delta V_g\) with \(\gamma <1\) being a ratio parameter.

Denoting \(\nu _N\) as the resonant electrode chemical potential with the quantum-dot energy level \(\mu _N\), we acquire the self-consistent equation \(\nu _N=\mu _N(\nu _N)\). As a result, the period of \(\mu _0\) in the conductance oscillations can simply be written as

$$\begin{aligned} \delta \mu _{0} & = \nu _{{N + 1}} - \nu _{N} = \Delta E + \frac{{e^{2} }}{C} + \Gamma _{{\text{c}}} \left[ {{\mathcal{N}}_{{\text{L}}} (\nu _{{N + 1}} ) - {\mathcal{N}}_{{\text{L}}} (\nu _{N} )} \right] \\ & = \Delta E + \frac{{e^{2} }}{C} + \Gamma _{c} {\mkern 1mu} {\mathcal{G}}_{L} (\mu _{0} )\delta \mu _{0} . \\ \end{aligned}$$
(12)

Equation (12) can also be rewritten as

$$\delta \mu _{0} = \frac{{\Delta E + e^{2} /C}}{{1 - \Gamma _{c} {\mkern 1mu} {\mathcal{G}}_{L} (\mu _{0} )}} \equiv \frac{{\Delta E + e^{2} /C}}{{{\mathcal{K}}(\mu _{0} )}} = \gamma e\delta V_{g} .$$
(13)

Here, \({\mathcal K}(\mu _0)=1-\Gamma _c\,{\mathcal G}_L(\mu _0)\) plays the role of a screening factor to the charge addition energy due to coupling to 1D electrodes. Furthermore, \(\Gamma _c\) is found to be

$$\begin{aligned} \Gamma _c\sim \frac{e^2}{4\pi \epsilon _0\epsilon _bL}\left[ \frac{3}{2}+\ln \left( \frac{L}{W}\right) \right] \equiv \frac{e^2}{C}\, \end{aligned}$$
(14)

where L (W) is the gate length (chain width), and \(\epsilon _b\) is the quantum-dot dielectric constant. It is clear from Eq. (14) that C is the bare dot capacitance, which is roughly proportional to L and related to W weakly.

If we consider a non-interacting 1D electron gas, its density of states per unit length is

$$\begin{aligned} {\mathcal G}_L(\mu _0)=\frac{\sqrt{2m^*}}{\pi \hbar }\,\sum \limits _{n=1}^{\mathrm{occupied}}\,\frac{1}{\sqrt{\mu _0-\varepsilon _n}}\ , \end{aligned}$$
(15)

where \(m^*\) is the electron effective mass and \(\varepsilon _n\) denotes the nth subband edge. Due to the fact that \(\delta {\mathcal G}_L(\mu _0)/{\mathcal G}_L(\mu _0)=\delta V_g/[2(V_g-V_0)]\), we know that \({\mathcal G}_L(\mu _0)\) becomes a constant for \(\delta \mu _0\ll V_g-V_0\) with \(V_0\) being the threshold gate voltage.

Appendix 2: Charge and heat currents for symmetric electron subbands

By assuming symmetric subbands \(\varepsilon _{n,k}=\varepsilon _{n,-k}\) for electrons with respect to \(k=0\), where n is the subband index and k is the wave number of electrons along a chain, then we obtain an anti-symmetric relation \(v_{n,-k}=-v_{nk}\) for electron group velocity. In this case, Eq. (5) leads to

$$\begin{aligned} {\mathcal J}^{(j)}&= {} \frac{2(-e)^{1-j}}{\pi }\sum _{n}\int _0^\infty dk\,|v_{nk}|\nonumber \\&\times (\varepsilon _{nk}-{\bar{\mu }})^j \left[ f_0(\varepsilon _{nk}-\mu _L)-f_0(\varepsilon _{nk}-\mu _R)\right] \ , \end{aligned}$$
(16)

where \(f_0(x)\) is the Fermi function for electrons in a thermal-equilibrium state. Because \(\mu _L+eU_b=\mu _R\equiv \mu\), we have \(f_0(\varepsilon _{nk}-\mu _L)-f_0(\varepsilon _{nk}-\mu _R)=eU_b[\partial f_0(\varepsilon _{nk}-\mu )/\partial \varepsilon _{nk}]\) in the limit of \(U_b\rightarrow 0\), and find \({\bar{\mu }}\rightarrow \mu =\mu _L=\mu _R\) simultaneously. Here, \(U_b\) represents an infinitesimal voltage difference between the left and the right electrodes connecting to a conduction chain in the middle and \({\bar{\mu }}\) is the chemical potential of the chain. For such a situation, we find from Eq. (16)

$$\begin{aligned} {\mathcal J}^{(j)}&= {} \frac{2eU_b(-e)^{1-j}}{\pi }\sum _{n}\left(\int _{\varepsilon _{n,k=0}}^{\varepsilon _{n,k_1}}+ \int _{\varepsilon _{n,k_1}}^{\varepsilon _{n,k_2}}+\cdots + \int _{\varepsilon _{n,k^*}}^\infty \right)\nonumber \\&\times \mathrm{sign}(v_{nk})(\varepsilon _{nk}-\mu )^j\, \left[ \frac{\partial f_0(\varepsilon _{nk}-\mu )}{\partial \varepsilon _{nk}}\right] \,d\varepsilon _{nk}\ . \end{aligned}$$
(17)

Here, the energy integration over the range \(0<k<\infty\) in Eq. (17) has been chopped into the sum of a series of sub-integrations between the successive extremum points \(\varepsilon _{n,k_m}\) to guarantee that \(\varepsilon _{n,k}\) is a monotonic function of k in these sub-ranges. In addition, \(\varepsilon _{n,k^*}\) in Eq. (17) represents the last extremum (minimum) point. Each integration can be calculated analytically for both cases with \(j=0\) and \(j=1\), respectively.

Appendix 3: Coupling of a quantum dot to surface plasmons

In the presence of a light illumination, the semiconductor Bloch equations [45] for photo-excited electrons in a quantum dot are written as

$$\begin{aligned} \frac{dn^\mathrm{e}_\ell }{dt}&= {} \frac{2}{\hbar }\,\sum \limits _j\,\mathrm{Im}\left[ \left( p_\ell ^j\right) ^*\left( {\mathcal D}^\mathrm{eh}_{\ell ,j}-p_\ell ^j\,U^\mathrm{eh}_{\ell ,j;j,\ell }\right) \right] \nonumber \\&+\left. \frac{\partial n ^\mathrm{e}_\ell }{\partial t}\right| _\mathrm{rel}-\delta _{\ell ,1}\,{\mathcal R}_\mathrm{sp}\,n_1^\mathrm{e}\,n_1^\mathrm{h}\ , \end{aligned}$$
(18)

where \(\ell =1,\,2,\,\ldots\) labels the energy levels, \(n^\mathrm{e}_\ell\) represents the level occupation, and \({\mathcal R}_\mathrm{sp}\) denotes the spontaneous emission rate. We have introduced in Eq. (18) the non-radiative energy relaxation [113] shown as the term marked ‘rel’. The notations for the other terms, \(p_\ell ^j\), \({\mathcal D}^\mathrm{eh}_{\ell ,j}\) and \(U^\mathrm{eh}_{\ell ,j;j,\ell }\), will be given bellow in this part. In a parallel way, the semiconductor Bloch equations for holes in a quantum dot are derived as

$$\begin{aligned} \frac{dn^\mathrm{h}_j}{dt}&= {} \frac{2}{\hbar }\,\sum \limits _\ell \,\mathrm{Im}\left[ \left( p_\ell ^j\right) ^*\left( {\mathcal D}^\mathrm{eh}_{\ell ,j}-p_\ell ^j\,U^\mathrm{eh}_{\ell ,j;j,\ell }\right) \right] \nonumber \\&+\left. \frac{\partial n^\mathrm{h}_j}{\partial t}\right| _\mathrm{rel}-\delta _{j,1}\,{\mathcal R}_\mathrm{sp}\,n_1^\mathrm{e}\,n_1^\mathrm{h}\ , \end{aligned}$$
(19)

where \(j=1,\,2,\,\ldots\) labels the hole energy levels and \(n^\mathrm{h}_j\) stands for the level occupation. Again, we have included the non-radiative energy relaxation in Eq. (19). The optical coherence introduced in Eqs. (18) and (19), on the other hand, is found to satisfy

$$\begin{aligned} i\hbar {\mkern 1mu} \frac{d}{{dt}}p_{\ell }^{j} & = {\text{ }}\left[ {\bar{\varepsilon }_{\ell }^{{\text{e}}} (\omega ) + \bar{\varepsilon }_{j}^{{\text{h}}} (\omega ) - \hbar (\omega + i\gamma _{0} )} \right]p_{\ell }^{j} \\ & \quad + \left( {1 - n_{\ell }^{{\text{e}}} - n_{j}^{{\text{h}}} } \right)\left( {\rm{\mathcal{D}}_{{\ell ,j}}^{{{\text{eh}}}} - p_{\ell }^{j} {\mkern 1mu} U_{{\ell ,j;j,\ell }}^{{{\text{eh}}}} } \right) \\ & \quad + p_{\ell }^{j} \left[ {\sum\limits_{{j_{1} }} {n_{{j_{1} }}^{{\text{h}}} {\mkern 1mu} \times \left( {U_{{j,j_{1} ;j_{1} ,j}}^{{{\text{hh}}}} - U_{{j,j_{1} ;j,j_{1} }}^{{{\text{hh}}}} } \right) - \sum\limits_{{\ell _{1} }} {\mkern 1mu} n_{{\ell _{1} }}^{{\text{e}}} {\mkern 1mu} U_{{\ell _{1} ,j;j,\ell _{1} }}^{{{\text{eh}}}} } } \right] \\ & \quad + p_{\ell }^{j} \left[ {\sum\limits_{{\ell _{1} }} {n_{{\ell _{1} }}^{{\text{e}}} {\mkern 1mu} \times \left( {U_{{\ell ,\ell _{1} ;\ell _{1} ,\ell }}^{{{\text{ee}}}} - U_{{\ell ,\ell _{1} ;\ell ,\ell _{1} }}^{{{\text{ee}}}} } \right) - \sum\limits_{{j_{1} }} {\mkern 1mu} n_{{j_{1} }}^{{\text{h}}} {\mkern 1mu} U_{{\ell ,j_{1} ;j_{1} ,\ell }}^{{{\text{eh}}}} } } \right], \\ \end{aligned}$$
(20)

where \(\hbar \gamma _0=\hbar \gamma _\mathrm{eh}+\hbar \gamma _{ext}\) corresponds to the total energy-level broadening from finite carrier lifetime and loss of an external field with angular frequency \(\omega\). Moreover, \(\overline{\varepsilon }^\mathrm{e}_\ell (\omega )\) and \(\overline{\varepsilon }^\mathrm{h}_j(\omega )\) in Eq. (20) denote the dressed-state kinetic energies for electrons and holes. [45] It can be seen from Eq. (20) that the diagonal dephasing (\(\gamma _0\)), the renormalization of interband Rabi coupling, the renormalization of electron and hole energies, as well as the exciton binding energy, are all included.

For a steady-state solution presented in Eq. (8), we calculated the renormalized interband energy-level separation as

$$\begin{aligned} {\mathcal W}^\mathrm{eh}_{\ell ,j}(\omega \vert t)&= {} \overline{\varepsilon }^\mathrm{e}_\ell (\omega \vert t)+\overline{\varepsilon }^\mathrm{h}_j(\omega \vert t)-U^{eh}_{\ell ,j;j,\ell }\nonumber \\&+\sum \limits _{\ell _1}\,n^\mathrm{e}_{\ell _1}(t)\left( U^\mathrm{ee}_{\ell ,\ell _1;\ell _1,\ell }-U^\mathrm{ee}_{\ell ,\ell _1;\ell ,\ell _1}\right) \nonumber \\&+\sum \limits _{j_1}\,n^\mathrm{h}_{j_1}(t)\left( U^\mathrm{hh}_{j,j_1;j_1,j}-U^\mathrm{hh}_{j,j_1;j,j_1}\right) \nonumber \\&-\sum \limits _{\ell _1\ne \ell }\,n^\mathrm{e}_{\ell _1}(t)\,U^\mathrm{eh}_{\ell _1,j;j,\ell _1}-\sum \limits _{j_1\ne j}\,n^\mathrm{h}_{j_1}(t)\,U^\mathrm{eh}_{\ell ,j_1;j_1,\ell }\ . \end{aligned}$$
(21)

Here, in Eqs. (18), (19), (20) and (21) we have introduced the Coulomb interaction matrix elements, defined by

$$\begin{aligned} U^\mathrm{ee}_{\ell _1,\ell _2;\ell _3,\ell _4}&= {} U_0\int \frac{d^2\mathbf{q}_\Vert }{q_\Vert }\,{\mathcal Q}^\mathrm{e}_{\ell _1,\ell _4}(\mathbf{q}_\Vert )\,{\mathcal Q}^\mathrm{e}_{\ell _2,\ell _3}(-\mathbf{q}_\Vert )\ , \end{aligned}$$
(22)
$$\begin{aligned} U^\mathrm{hh}_{j_1,j_2;j_3,j_4}&= {} U_0\int \frac{d^2\mathbf{q}_\Vert }{q_\Vert }\,{\mathcal Q}^\mathrm{h}_{j_1,j_4}(\mathbf{q}_\Vert )\,{\mathcal Q}^\mathrm{h}_{j_2,j_3}(-\mathbf{q}_\Vert )\ , \end{aligned}$$
(23)
$$\begin{aligned} U^\mathrm{eh}_{\ell ,j;j^\prime ,\ell ^\prime }&= {} U_0\int \frac{d^2\mathbf{q}_\Vert }{q_\Vert }\,{\mathcal Q}^\mathrm{e}_{\ell ,\ell ^\prime }(\mathbf{q}_\Vert )\,{\mathcal Q}^\mathrm{h}_{j,j^\prime }(-\mathbf{q}_\Vert )\ , \end{aligned}$$
(24)

where \(U_0=e^2/8\pi ^2\epsilon _0\epsilon _b\), Furthermore, two dimensionless form factors, \({\mathcal Q}_{\ell ,\ell ^\prime }^\mathrm{e}(\mathbf{q_\Vert })\) and \({\mathcal Q}_{j,j^\prime }^\mathrm{h}(\mathbf{q}_\Vert )\) have been employed in Eqs. (22)–(24) due to confinement by a quantum dot. On the other hand, in Eqs. (18), (19) and (20), the Rabi coupling matrix elements to an electromagnetic field \(\displaystyle {{\varvec{E}}}(\mathbf{r};\,t)=\Theta (t)\,{\varvec{E}}(\mathbf{r};\,\omega )\,e^{-i\omega t}\) are found to be

$$\begin{aligned} {\mathcal D}^\mathrm{eh}_{\ell ,j}(t)=-\delta _{\ell ,1}\,\delta _{j,1}\,\Theta (t)\,\left[ {\varvec{E}}^\mathrm{eh}_{\ell ,j}(\omega )\cdot \mathbf{d}_\mathrm{c,v}\right] \ , \end{aligned}$$
(25)

where \(\Theta (x)\) is a unit-step function, \(\mathbf{d}_\mathrm{c,v}\) is interband dipole moment, and the effective electric field in Eq. (25) is defined as

$$\begin{aligned} {{\varvec{E}}}^\mathrm{eh}_{\ell ,j}(\omega )=\int d^3\mathbf{r}\left[ \phi ^\mathrm{e}_\ell (\mathbf{r})\right] ^*{\varvec{E}}(\mathbf{r};\,\omega )\left[ \phi ^\mathrm{h}_j(\mathbf{r})\right] ^*\ . \end{aligned}$$
(26)

Here, \(\phi ^\mathrm{e}_\ell (\mathbf{r})\) [\(\phi ^\mathrm{h}_j(\mathbf{r})\)] in (26) corresponds to the electron (hole) wave functions, respectively.

Under the steady-state condition, the interband optical polarization \({{\varvec{\mathcal P}}}^\mathrm{loc}(\mathbf{r};\,\omega )\), related to the optical coherence in the quantum dot, is derived as [114]

$$\begin{aligned} {\varvec{\mathcal{P}}}^{{{\text{loc}}}} ({\mathbf{r}};\omega ) & = 2\left| {{\mathcal{F}}_{0} ({\mathbf{r}})} \right|^{2} {\mathbf{d}}_{{{\text{c}},{\text{v}}}} \left\{ {\int {d^{3} } {\mathbf{r}}^{\prime } {\mkern 1mu} \phi _{1}^{{\text{e}}} ({\mathbf{r}}^{\prime } ){\mkern 1mu} \phi _{1}^{{\text{h}}} ({\mathbf{r}}^{\prime } )} \right\} \\ &\quad \times {\mkern 1mu} \frac{1}{\hbar }{\mkern 1mu} \mathop {\lim }\limits_{{t \to \infty }} \left[ {\frac{{1 - n_{1}^{{\text{e}}} (t) - n_{1}^{{\text{h}}} (t)}}{{\omega + i\gamma _{0} - {\mathcal{W}}_{{1,1}}^{{{\text{eh}}}} (\omega |t)}}} \right]{\mathcal{D}}_{{1,1}}^{{{\text{eh}}}} (t), \\ \end{aligned}$$
(27)

where the profile function \(|{\mathcal F}_0(\mathbf{r})|^2\) comes from the confinement of a quantum dot. This optical polarization plays the role of a source term in Maxwell equations for self-consistent total field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, B., Ray, A.K., Sharma, A.K. et al. Single-molecule devices: materials, structures and characteristics. J Mater Sci: Mater Electron 28, 3936–3954 (2017). https://doi.org/10.1007/s10854-016-6065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6065-1

Keywords

Navigation