Skip to main content
Log in

Optoelectronic and photocatalytic properties of in situ platinum-doped TiO2 films deposited by means of pulsed laser ablation technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report on the effect of Pt incorporation on the microstructural, optoelectronic and catalytic properties of TiO2 thin films deposited by means of the pulsed-laser deposition (PLD) method. The structural, morphological, optoelectronic and catalytic properties of the deposited TiO2:Pt films were systematically investigated, as a function of their Pt content, by means of various techniques including X-ray diffraction, X-ray photoelectron spectroscopy (XPS), atomic force microscopy, Fourier-transform infra-red spectroscopy and ellipsometry. The in situ doping of the PLD-TiO2 films, at different Pt contents, was achieved by the concomitant laser ablation of a TiO2 target uniformly covered with Pt wires. We show that by increasing the number of Pt wires positioned on the TiO2 target from 1 to 4, the Pt concentration of the TiO2:Pt films increases from 0.05 to 0.35 at.%. While the bandgap of room-temperature (RT) deposited films was found to be insensitive to their Pt content (remaining around the 3.2 eV anatase value), the TiO2:Pt films deposited at high temperature (Td = 500 °C) were found to exhibit a significant narrowing of their bandgap (from 3.3 to 2.45 eV), when their Pt content is increased (from 3.3 to 2.45 eV). From a structural point of view, while the RT-deposited TiO2:Pt films deposited are mainly amorphous with the presence of some TiO2 nanocrystallites whose density increases as Pt content increases, while those deposited at 500 °C were found to crystallize in the anatase phase with their crystallinity improving with increasing Pt contents. XPS analyses have revealed that the incorporated Pt mainly exists in a metallic state, likely as nano-inclusions in an otherwise TiO2 matrix. By being able to monitor the optoelectronic properties of the annealed TiO2:Pt films through their Pt content, their photocatalytic activity was significantly improved with respect to that of their undoped TiO2 counterpart. The enhancement of the photocatalytic activity is believed to be due to an enhanced photoabsorption of photons because of bandgap narrowing along with a better harvesting of the separated photogenerated charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Hajjaji, K. Trabelsi, A. Atyaoui, M. Gaidi, L. Bousselmi, B. Bessais, M.A. El Khakani, Nanoscale Res. Lett. 9, 543 (2014)

    Article  Google Scholar 

  2. M.J. Uddin, F. Cesano, F. Bonino, S. Bordiga, G. Spoto, D. Scarano, A. Zecchina, J. Photochem. Photobiol. A 189, 286–294 (2007)

    Article  Google Scholar 

  3. R.A. Antunes, M.C.L. de Oliveira, M.F. Pillis, Int. J. Electrochem. Sci. 8, 1487–1500 (2013)

    Google Scholar 

  4. M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Electron. Mater. 45, 3612 (2016)

    Article  Google Scholar 

  5. M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 474–480 (2016)

    Article  Google Scholar 

  6. C.C. Evans, O. Reshef, J. Bradley, F. Parsy, J. Choy, P. Deotare, E. Martí-Panameño, M. Loncar, E. Mazur, in TiO 2 for Nonlinear Optical Devices, ed. by B. Di Bartolo, J. Collins. NATO Science for Peace and Security Series B: Physics and Biophysics (Springer, Netherlands, 2012), p. 405

  7. A.J. Frank, N. Kopidakis, J. van de Lagemaat, Coord. Chem. Rev. 248, 1165–1179 (2004)

    Article  Google Scholar 

  8. O. Alev, E. Şennik, N. Kılınç, Z.Z. Öztürk, Proc. Eng. 120, 1162–1165 (2015)

    Article  Google Scholar 

  9. S. Li, P. Zhang, X. Song, L. Gao, ACS Appl. Mater. Interfaces 7, 18560–18565 (2015)

    Article  Google Scholar 

  10. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855–874 (2011)

    Article  Google Scholar 

  11. N. Delegan, R. Daghrir, P. Drogui, M.A. El Khakani, Bandgap tailoring of in situ nitrogen-doped TiO2 sputtered films intended for electrophotocatalytic applications under solar light. J. Appl. Phys. 116, 153510 (2014)

    Article  Google Scholar 

  12. Y. Hu, X. Song, S. Jiang, C. Wei, Chem. Eng. J. 274, 102–112 (2015)

    Article  Google Scholar 

  13. F.L. Lam, X. Hu, T.M. Lee, K.Y. Chan, Sep. Purif. Technol. 67, 233–237 (2009)

    Article  Google Scholar 

  14. T. Miyasaka, Y. Kijitori, J. Electrochem. Soc. 151, A1767–A1773 (2004)

    Article  Google Scholar 

  15. N. Janene, A. Hajjaji, M. Ben Rabha, M.A. El Khakani, B. Bessais, M. Gaidi, Phys. Status Solidi (c) 9, 2141–2144 (2012)

    Article  Google Scholar 

  16. E. Gyorgy, G. Socol, E. Axente, I.N. Mihailescu, C. Ducu, S. Ciuca, Appl. Surf. Sci. 247, 429–433 (2005)

    Article  Google Scholar 

  17. T. Yoshida, Y. Fukami, M. Okoshi, N. Inoue, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Brief Commun. Rev. Pap. 44, 3059–3062 (2005)

    Article  Google Scholar 

  18. D. Gonbeau, C. Guimon, G. Pfisterguillouzo, A. Levasseur, G. Meunier, R. Dormoy, Surf. Sci. 254, 81–89 (1991)

    Article  Google Scholar 

  19. C.M. Chan, S. Trigwell, T. Duerig, Surf. Interface Anal. 15, 349–354 (1990)

    Article  Google Scholar 

  20. S. Lars, T. Andersson, Catal. Lett. 7, 351–358 (1990)

    Article  Google Scholar 

  21. Z. Zheng, X. Wang, J. Liu, J. Xiao, Z. Hu, Appl. Surf. Sci. 309, 144–152 (2014)

    Article  Google Scholar 

  22. M.A. El Khakani, R. Dolbec, A.M. Serventi, M.C. Horrillo, M. Trudeau, R.G. Saint-Jacques, D.G. Rickerby, I. Sayago, Sens. Actuators B Chem. 77, 383–388 (2001)

    Article  Google Scholar 

  23. S.F. Wang, Y.F. Hsu, R.L. Lee, Y.S. Lee, Appl. Surf. Sci. 229, 140 (2004)

    Article  Google Scholar 

  24. A. Guinier, Théorie et technique de la radiocristallographique (Dunod, Paris, 1964)

    Google Scholar 

  25. R.A. Spurr, H. Myers, Anal. Chem. 29, 760–761 (1957)

    Article  Google Scholar 

  26. M. Reason, N.G. Rudawski, H.A. McKay, X. Weng, W. Ye, R.S. Goldman, J. Appl. Phys. 101, 083520 (2007)

    Article  Google Scholar 

  27. J.P. Jalava, V.M. Taavitsainen, R.J. Lamminmäki, M. Lindholm, S. Auvinen, M. Alatalo, E. Vartiainen, H. Haario, J. Quant. Spectrosc. Radiat. Transf. 167, 105–118 (2015)

    Article  Google Scholar 

  28. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, Thin Solid Films 371, 218–224 (2000)

    Article  Google Scholar 

  29. T. Fuyuki, H. Matsunami, Jpn. J. Appl. Phys. Part 1(25), 1288 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gaidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trabelsi, K., Hajjaji, A., Ka, I. et al. Optoelectronic and photocatalytic properties of in situ platinum-doped TiO2 films deposited by means of pulsed laser ablation technique. J Mater Sci: Mater Electron 28, 3317–3324 (2017). https://doi.org/10.1007/s10854-016-5925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5925-z

Keywords

Navigation