Skip to main content
Log in

Photoconductivity, dielectric, thermal and mechanical studies on nonlinear optical phasematchable single crystal: 2-amino-4-methylpyridinium 4-nitrobenzoate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Protonated 2-amino-4-methylpyridinium 4-nitrobenzoate compound was synthesised and optical quality NLO single crystals of dimension 5 × 5 × 1 mm3 was grown by isothermal solvent evaporation method. The single crystal X-ray diffraction analysis confirmed the monoclinic system with non-centrosymmetric space group Pc of the grown crystal in which the lattice parameters are a = 10.531 Å, b = 5.012 Å, c = 12.238 Å and also powder X-ray diffraction analysis was performed. The stoichiometric composition of the grown crystal were confirmed using CHN analyser. The FTIR spectrum showed the symmetry of vibrations of molecules in the crystal. Optical transmittance window in the entire visible region will be useful for harmonic generations. At different temperatures, the dielectric constant and dielectric loss were measured with respect to the wide range of frequencies. Mechanical stability of the crystal in (100) and (002) planes were investigated using Shimadzu HMV-2 microhardness analyser and it belongs to soft category. The material was thermally stable up to 222 °C and it was completely converted into volatile substance at 290 °C. The 2-amino-4-methylpyridinium 4-nitrobenzoate crystal exhibited positive photoconductivity and the powder SHG measurement exposed the phasematching ability of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.L. Freeman, Q. Zhao, Y. Zhang, J. Wang, C.M. Lawsonb, G.M. Gray, Dalton Trans. 42, 14281–14297 (2013)

    Article  Google Scholar 

  2. B. Gu, Y.H. Wang, X.C. Peng, J.P. Ding, J.L. He, H.T. Wang, Appl. Phys. Lett. 85, 3687–3689 (2004)

    Article  Google Scholar 

  3. D.S. Chemla, J. Zyss, Nonlinear optical properties of organic molecules and crystals, vol. 2 (Academic Press, New York, 1987)

    Google Scholar 

  4. P. Nagapandiselvi, C. Baby, R. Gopalakrishnan, RSC Adv. 4, 22350–22358 (2014)

    Article  Google Scholar 

  5. G. Anandha Babu, P. Ramasamy, Mater. Res. Bull. 46, 631–634 (2011)

    Article  Google Scholar 

  6. S. Janarthanan, R. Sugaraj Samuel, S. Selvakumar, Y.C. Rajan, D. Jayaraman, S. Pandi, J. Mater. Sci. Technol. 27, 271–274 (2011)

    Article  Google Scholar 

  7. S. Balaprabhakaran, J. Chandrasekaran, B. Babu, R. Thirumurugan, K. Anitha, Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 700–706 (2015)

    Article  Google Scholar 

  8. J. Zyss, Molecular nonlinear optics: materials, physics, devices (Academic Press, Bostan, 1994)

    Google Scholar 

  9. A. Yokoo, S. Tamaru, L. Yokohama, H. Ito, T. Kaino, J. Cryst. Growth 156, 279–284 (1995)

    Article  Google Scholar 

  10. D. Jiang, S. Chen, Z. Xue, Y. Li, H. Liu, W. Yang, Y. Li, Dyes Pigment. 125, 100–105 (2016)

    Article  Google Scholar 

  11. J.L. Quader, J. Chem. Phys. 67, 446–457 (1977)

    Article  Google Scholar 

  12. S.J. Lalama, A.F. Garito, Phys. Rev. A 20, 1179–1194 (1979)

    Article  Google Scholar 

  13. B.F. Levine, C. Bethea, C.D. Thurmond, R.T. Lynch, J.L. Bernstein, J. Appl. Phys. 50, 2523–2527 (1979)

    Article  Google Scholar 

  14. A.G. Astill, Thin Solid Films 204, 1–17 (1991)

    Article  Google Scholar 

  15. D.S. Chemla, J. Zyss, Nonlinear optical properties of organic molecules and crystals (Academic Press, New York, 1987)

    Google Scholar 

  16. A.F. Pozharski, A.T. Soldatenkov, A.R Katritzky, Heterocycles in Life and Society (Wiley, New York, 1997)

    Google Scholar 

  17. A.R. Katritzky, C.W. Rees, E.F.V. Scriven, Comprehensive Heterocyclic Chemistry II (Pergamon Press, Oxford, 1996)

    Google Scholar 

  18. G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures (Springer, Berlin, 1991)

    Book  Google Scholar 

  19. G.A. Jeffrey, An Introduction to Hydrogen Bonding (Oxford University Press, Oxford, 1997)

    Google Scholar 

  20. S. Scheiner, Hydrogen Bonding: A Theoretical Perspective (Oxford University Press, New York, 1997)

    Google Scholar 

  21. G. Anandha Babu, P. Ramasamy, Spectrochim. Acta A Mol. Biomol. Spectrosc. 82, 521–526 (2011)

    Article  Google Scholar 

  22. T.P. Srinivasan, S. Anandhi, R. Gopalakrishnan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 75, 1223–1227 (2010)

    Article  Google Scholar 

  23. L. Chandra, J. Chandrasekaran, K. Perumal, B. Babu, Optik - Int. J. Light Electron Opt. 127, 3206–3210 (2016)

    Article  Google Scholar 

  24. K. Thirupugalmani, S. Karthick, G. Shanmugam, V. Kannan, B. Sridhar, K. Nehru, S. Brahadeeswaran, Opt. Mater. 49, 158–170 (2015)

    Article  Google Scholar 

  25. R. Srineevasan, R. Rajasekaran, J. Mol. Struct. 1048, 238–243 (2013)

    Article  Google Scholar 

  26. S. Draguta, M.S. Fonari, A.E. Masunov, J. Zazueta, S. Sullivan, M.Y. Antipin, T V Timofeeva Cryst. Eng. Comm. 15, 4700–4710 (2013)

    Article  Google Scholar 

  27. M. Hemamalini, H.K. Fun, Acta Cryst. E 66, o335 (2010)

    Article  Google Scholar 

  28. M. Mersch, K. Buse, W. Sauf, H. Hesse, E. Kratzig, Phys. Status Solidi 140, 273–281 (1993)

    Article  Google Scholar 

  29. M. Senthil Pandian, N. Balamurugan, V. Ganesh, P.V. Raja Shekar, K. Kishan Rao, P. Ramasamy, Mater. Lett. 62, 3830–3832 (2008)

    Article  Google Scholar 

  30. M. Senthil Pandian, P. Ramasamy, B. Kumar, Mater. Res. Bull. 47, 1587–1597 (2012)

    Article  Google Scholar 

  31. M. Senthil Pandian, P. Ramasamy, Mater. Res. Bull. 47, 826–835 (2012)

    Article  Google Scholar 

  32. B. Babu, J. Chandrasekaran, S. Balaprabhakaran, Mater. Sci-Pol. 32, 164–170 (2014)

    Article  Google Scholar 

  33. S. Gowri, T. Uma Devi, D. Sajan, S.R. Bheeter, N. Lawrence, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 89, 119–122 (2012)

    Article  Google Scholar 

  34. B. Want, F. Ahmad, P.N. Kotru, J. Mater. Sci. 42, 9324–9330 (2007)

    Article  Google Scholar 

  35. V. Vasudevan, R. Ramesh babu, A. Reicher nelcy, G. Bhagavannarayana, K. Ramamurthi, Bull. Mater. Sci. 34, 469–475 (2011)

    Article  Google Scholar 

  36. W. Mott, Micro Indentation Hardness Testing (Butterworths, London, 1956)

    Google Scholar 

  37. E.M. Onitsch, Mikroskopie 95, 12 (1956)

    Google Scholar 

  38. M. Hanneman, Metall. Manch. 23, 135 (1941)

    Google Scholar 

  39. P.V. Dhanaraj, N.P. Rajesh, G. Bhagavannarayana, Phys. B 405, 3441–3445 (2010)

    Article  Google Scholar 

  40. B. Deepa, P. Philominathan, Optik Int J. Light Electron Opt. 127, 8698–8705 (2016)

    Article  Google Scholar 

  41. V. Kannan, K. Thirupugalmani, G. Shanmugam, S. Brahadeeswaran, J. Therm. Anal. Calorim. 115, 731–742 (2014)

    Article  Google Scholar 

  42. V. Kannan, R. Rakhikrishna, J. Philip, S. Brahadeeswaran, J. Therm. Anal. Calorim. 116, 339–347 (2014)

    Article  Google Scholar 

  43. R. Bottom, Thermogravimetric analysis, ed. by P. Gabbot Principles and Applications of Thermal Analysis (Blackwell, London, 2008)

  44. M.A. Rajkumar, S.S. John Xavier, S. Anbarasu, P.A. Devarajan, Res. J. Physical Sci. 2, 1–4 (2014)

    Google Scholar 

  45. R.H. Bube, Photoconductivity of Solids (Wiley Interscience, New York, 1981)

    Google Scholar 

  46. M. Simon, K. Buse, R. Pankrath, E. Kratzig, J. Appl. Phys. 80, 251–255 (1996)

    Article  Google Scholar 

  47. B. Milton Boaz, S. Mary Navis Priya, J. Mary Linet, P. Martin Deva Prasath, S. Jerome Das, Opt. Mater. 29, 827–832 (2007)

    Article  Google Scholar 

  48. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798–3813 (1968)

    Article  Google Scholar 

  49. H. Zhang, Y. Sun, X. Chen, X. Yan, B. Sun, J. Cryst. Growth 324, 196 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for the financial assistance under a major research project (03(1221)/12/EMR II). Authors acknowledge Prof. P.K. Das, Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, for extending the laser facilities for the SHG measurement. Authors also acknowledge STIC, Cochin for providing analytical instrument facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varadharajan Krishnakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnakumar, V., Jayaprakash, J. & Boobas, S. Photoconductivity, dielectric, thermal and mechanical studies on nonlinear optical phasematchable single crystal: 2-amino-4-methylpyridinium 4-nitrobenzoate. J Mater Sci: Mater Electron 28, 1706–1714 (2017). https://doi.org/10.1007/s10854-016-5716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5716-6

Keywords

Navigation