Skip to main content
Log in

Structural, ferromagnetic and optical properties of pure bismuth A-site polar perovskite Bi(Mg3/8Fe2/8Ti3/8)O3 synthesized at ambient pressure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi(Mg3/8Fe2/8Ti3/8)O3 (BMFT) perovskite oxide ceramic has been synthesized by a conventional solid-state reaction method at ambient pressure. Structural characterization is detected by X-ray diffraction (XRD) and Raman spectroscopy, reflecting a polycrystalline perovskite structure. The peaks in XRD pattern shift toward lower angle, which indicates larger lattice constant than BiFeO3 (BFO). High frequency modes blue shift and the peak broadening can be observed clearly in micro-Raman spectroscopy compared with BFO patterns. Morphology analysis through scanning tunneling microscope shows dense and well-interlinked grains. Through the UV–Vis–NIR spectra, BMFT displays a narrow band gap of 2.23 eV, smaller than the 2.8 eV band gap of BFO. The room-temperature ferromagnetism of BMFT ceramic is measured for the first time, which can be attributed to the nonmagnetic ions of Mg2+ and Ti4+ ions replacing Fe3+ ions that causing the remanent magnetic moments. These results will open an avenue to further design multiferroic data storage and photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Chen, W. Jin, J. Mater. Sci. Mater. Electron. 25, 4039–4045 (2014)

    Article  Google Scholar 

  2. G. Dhir, P. Uniyal, N.K. Verma, J. Mater. Sci. Mater. Electron. 26, 3538–3544 (2015)

    Article  Google Scholar 

  3. S. Sharma, P. Saravanan, O.P. Pandey, P. Sharma, J. Mater. Sci. Mater. Electron. 27, 5909–5915 (2016)

    Article  Google Scholar 

  4. V.S. FilipNev, N.P. Smolyaninov, E.G. Fesenko, I.N. Belyaev, Kristallografiya 5, 958 (1960)

    Google Scholar 

  5. H. Hughes, M. Allix, C.A. Bridges, J.B. Claridge, X. Kuang, H. Niu et al., J. Am. Chem. Soc. 127, 13790–13791 (2005)

    Article  Google Scholar 

  6. B.A. Craig, A. Mathieu, S.R. Matthew, X.J. Kuang, S. Iasmi, S.C. Derek et al., Angew. Chem. Int. Ed. 119, 8941–8945 (2007)

    Article  Google Scholar 

  7. V. Kumar, A. Gaur, R.K. Kotnala, Superlattices Microstruct. 67, 233–241 (2014)

    Article  Google Scholar 

  8. W.L. Zhou, H.M. Deng, P.X. Yang, J.H. Chu, Appl. Phys. Lett. 105, 111904 (2014)

    Article  Google Scholar 

  9. J. Liu, H.M. Deng, X.Z. Zhai, T. Lin, X.J. Meng, Y.Y. Zhang et al., Mater. Lett. 133, 49–52 (2014)

    Article  Google Scholar 

  10. M.K. Sharif, M.A. Khan, A. Hussain, F. Iqbal, I. Shakir, G. Murtaza et al., J. Alloys Compd. 667, 329–340 (2016)

    Article  Google Scholar 

  11. Y. Yang, J.Y. Sun, K. Zhu, Y.L. Liu, L. Wan, J. Appl. Phys. 103, 093532 (2008)

    Article  Google Scholar 

  12. M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo, Appl. Phys. Lett. 88, 042907 (2006)

    Article  Google Scholar 

  13. G.L. Yuan, S.W. Or, H.L.W. Chan, J. Phys. D 40, 1196 (2007)

    Article  Google Scholar 

  14. S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, J. Petzelt, J. Prokleška et al., Phys. Rev. B 75, 024403 (2007)

    Article  Google Scholar 

  15. R. Palai, H. Schmid, J.F. Scott, R.S. Katiyar, Phys. Rev. B 81, 139903 (2010)

    Article  Google Scholar 

  16. R.P.S.M. Lobo, R.L. Moreira, D. Lebeugle, D. Colson, Phys. Rev. B 76, 172105 (2007)

    Article  Google Scholar 

  17. L. Klingera, E. Rabkin, Mater. Lett. 161, 508–510 (2015)

    Article  Google Scholar 

  18. W.J. Zhang, J. Chen, X.X. An, Q. Wang, L.L. Fan, F.F. Wang et al., Dalton Trans. 43, 9255–9259 (2014)

    Article  Google Scholar 

  19. J. Liu, H.M. Deng, X.Z. Zhai, H.Y. Cao, P.X. Yang, J.H. Chu, J. Mater. Sci. Mater. Electron. 26, 2977–2981 (2015)

    Article  Google Scholar 

  20. L. Huang, H.M. Deng, J. He, X.K. Meng, L. Sun, P.X. Yang et al., J. Mater. Sci. Mater. Electron. 26, 3984–3988 (2015)

    Article  Google Scholar 

  21. J. Liu, H.M. Deng, H.Y. Cao, X.Z. Zhai, J.H. Tao, L. Sun et al., Appl. Surf. Sci. 307, 543–547 (2014)

    Article  Google Scholar 

  22. X.Z. Zhai, H.M. Deng, W.L. Zhou, P.X. Yang, J.H. Chu, Z. Zheng, Mater. Lett. 161, 423–426 (2015)

    Article  Google Scholar 

  23. J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhil, Appl. Phys. Lett. 96, 102509 (2010)

    Article  Google Scholar 

  24. W.L. Zhou, H.M. Deng, L. Yu, P.X. Yang, J.H. Chu, J. Appl. Phys. 117, 194102 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61474045) and the State Key Basic Research Program of China (2013CB922300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingxiong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Deng, H., Zhou, W. et al. Structural, ferromagnetic and optical properties of pure bismuth A-site polar perovskite Bi(Mg3/8Fe2/8Ti3/8)O3 synthesized at ambient pressure. J Mater Sci: Mater Electron 28, 934–938 (2017). https://doi.org/10.1007/s10854-016-5610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5610-2

Keywords

Navigation