Skip to main content
Log in

Effect of charge compensator ion on dysprosium doped di-calcium magnesium di-silicate phosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present article, effect of charge compensator ions (R+ = Li+, Na+ and K+) on dysprosium doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Dy3+) phosphors were investigated. The Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ (R+ = Li+, Na+ and K+) phosphors were prepared by the traditional high temperature solid state reaction method. The crystal structures of sintered phosphors were an akermanite type structure which belongs to the tetragonal crystallography. Thremoluminescence kinetic parameters such as activation energy (E), order of kinetics (b), and the frequency factor (s) of synthesized phosphors has been calculated by the peak shape method. The prepared Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ phosphors were excited at 350 nm and their corresponding emission spectrum were recorded at blue (481 nm) and yellow (574 nm) region due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions respectively of Dy3+ ions. The combination of these two emissions constituted as white light; confirmed by the Commission Internationale de L’Eclairage chromaticity diagram. The possible mechanism of white light emitting Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ phosphors were also investigated. The addition of charge compensator ions enhances the luminescence intensity of prepared Ca2MgSi2O7:Dy3+ phosphors because they neutralize the charge generated by Dy3+ substitution for Ca2+ ions. The role of Li+ ions among all charge compensator ions (Na+ or K+) used was found to be most effective for enhanced Dy3+ ion emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.W. Leverenz, An Introduction to Luminescence of Solids (Dover Publications Inc., New York, 1968)

    Google Scholar 

  2. X. Li, Z. Yang, L. Guan, J. Guo, Y. Wang, Q. Guo, J. Alloys Compd. 478, 684–686 (2009)

    Article  Google Scholar 

  3. M.M. Shang, C.X. Li, J. Lin, Chem. Soc. Rev. 43, 1372–1386 (2014)

    Article  Google Scholar 

  4. I.P. Sahu, D.P. Bisen, N. Brahme, Displays 35, 279–289 (2014)

    Article  Google Scholar 

  5. Y. Lin, Z. Tang, Z. Zhang, C. Nan, J. Alloys Compd. 348, 76–79 (2003)

    Article  Google Scholar 

  6. Y. Wang, Z. Wang, P. Zhang, Z. Hong, X. Fan, G. Qian, Mater. Lett. 5, 3308–3311 (2004)

    Article  Google Scholar 

  7. H.A. Höppe, Angew. Chem. Int. Ed. 48, 3572–3582 (2009)

    Article  Google Scholar 

  8. A.K. Parchur, A.I. Prasad, S.B. Rai, R.S. Ningthoujam, Dalton Trans. 41, 13810–13814 (2012)

    Article  Google Scholar 

  9. Z. Xin, X. Xu-Hui, Q. Jian-Bei, Y. Xue, Chin. Phys. B 22(9), 097801–097805 (2013)

    Article  Google Scholar 

  10. G.J. Talwar, C.P. Joshi, S.V. Moharil, S.M. Dhopte, P.L. Muthal, V.K. Kondawat, J. Lumin. 129(11), 1239–1241 (2009)

    Article  Google Scholar 

  11. I.P. Sahu, D.P. Bisen, N. Brahme, Displays 38, 68–76 (2015)

    Article  Google Scholar 

  12. Z. Wang, S. Lou, P. Li, J. Lumin. 156, 87–90 (2014)

    Article  Google Scholar 

  13. Z. Xiao, Z. Xiao, Long afterglow silicate luminescent materials and its manufacturing method. US Patent No. 6-093-346

  14. J.K. Park, M.A. Lim, C.H. Kim, H.D. Park, Appl. Phys. Lett. 82(5), 683–685 (2003)

    Article  Google Scholar 

  15. I.P. Sahu, J. Mater. Sci. Mater. Electron. 26(9), 7059–7072 (2015)

    Article  Google Scholar 

  16. H. He, R. Fu, F. Song, D. Wang, J. Chen, J. Lumin. 128, 489–493 (2008)

    Article  Google Scholar 

  17. JCPDS file number 77-1149, JCPDS International Center for Diffraction Data

  18. R. Shrivastava, J. Saluja, Integr. Ferroelectr. 159, 49–56 (2015)

    Article  Google Scholar 

  19. R. Shrivastava, J. Saluja, M. Dash, Superlattices Microstruct. 82, 262–268 (2015)

    Article  Google Scholar 

  20. J. Liu, Z.C. Wu, P. Wang, Y.M. Mei, M. Jiang, S.P. Kuang, Luminescence 29, 868–871 (2014)

    Article  Google Scholar 

  21. B. Han, P. Li, J. Zhang, J. Zhang, Y. Xue, H. Shi, Dalton Trans. 44, 7854–7861 (2015)

    Article  Google Scholar 

  22. A.K. Singh, S.K. Singh, S.B. Rai, RSC Adv. 4, 27039–27061 (2014)

    Article  Google Scholar 

  23. H. Liu, Y. Hao, H. Wang, J. Zhao, P. Huang, B. Xu, J. Lumin. 131, 2422–2426 (2011)

    Article  Google Scholar 

  24. R. Chen, Y. Krish, Analysis of Thermally Stimulated Process (Pergamon, New York, 1981)

    Google Scholar 

  25. V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminescence (Springer, Berlin, 2006)

    Google Scholar 

  26. R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomenon (World Scientific Press, Singapore, 1997)

    Book  Google Scholar 

  27. S.K. Gupta, M. Kumar, V. Natarajan, S.V. Godbole, Opt. Mater. 35, 2320–2328 (2013)

    Article  Google Scholar 

  28. A.K. Parchur, R.S. Ningthoujam, Dalton Trans. 40, 7590 (2011)

    Article  Google Scholar 

  29. G.S. Rama Raju, J.Y. Park, H.C. Jung, B.K. Moon, J.H. Jeong, J.H. Kim, Curr. Appl. Phys. 9, 92 (2009)

    Article  Google Scholar 

  30. I.P. Sahu, P. Chandrakar, R.N. Baghel, D.P. Bisen, N. Brahme, R.K. Tamrakar, J. Alloys Compd. 649, 1329 (2015)

    Article  Google Scholar 

  31. N.N. Yamashita, J. Phys. Soc. Jpn. 35, 1089 (1973)

    Article  Google Scholar 

  32. J. Kuang, Y. Liu, J. Zhang, J. Solid State Chem. 179, 266–269 (2006)

    Article  Google Scholar 

  33. I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, J. Electron. Mater. 45, 2222–2232 (2016)

    Article  Google Scholar 

  34. S. Saha, S. Das, U.K. Ghorai, N. Mazumder, B.K. Gupta, K.K. Chattopadhyay, Dalton Trans. 42, 12965–12974 (2013)

    Article  Google Scholar 

  35. Y.B. Wu, Z. Sun, K.B. Ruan, Y. Xu, H. Zhang, J. Lumin. 155, 269–274 (2014)

    Article  Google Scholar 

  36. M.Y. Peng, J.C. Lei, L.Y. Li, L. Wondraczek, Q.Y. Zhang, J.R. Qiu, J. Mater. Chem. C 1, 5303–5308 (2013)

    Article  Google Scholar 

  37. Z.P. Ci, Q.S. Sun, S.C. Qin, M.X. Sun, X.J. Jiang, X.D. Zhang, Y.H. Wang, Phys. Chem. Chem. Phys. 16, 11597–11602 (2014)

    Article  Google Scholar 

  38. H. Liu, Y. Hao, H. Wanga, J. Zhao, P. Huang, B. Xu, J. Lumin. 131, 2422–2426 (2011)

    Article  Google Scholar 

  39. CIE (1931) International Commission on Illumination. Publication CIE no. 15 (E-1.3.1)

  40. I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, R. Shrivastava, J. Mater. Sci. Mater. Electron. 26, 9907–9920 (2015)

    Article  Google Scholar 

  41. T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, J. Electrochem. Soc. 143, 2670 (1996)

    Article  Google Scholar 

  42. C. Shi, Y. Fu, B. Liu, G. Zhang, Y. Chen, Z. Qi, X. Luo, J. Lumin. 122–123, 11–13 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishwar Prasad Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, I.P. Effect of charge compensator ion on dysprosium doped di-calcium magnesium di-silicate phosphors. J Mater Sci: Mater Electron 28, 892–902 (2017). https://doi.org/10.1007/s10854-016-5604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5604-0

Keywords

Navigation