Skip to main content
Log in

Surface topography and hydrogen sensor response of APCVD grown multilayer graphene thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Atmospheric pressure chemical vapour deposition was employed to deposit graphene thin films on thermally oxidized p-silicon substrates. Raman spectroscopy and energy dispersive spectroscopy revealed the multilayer nature and the composition of the grown graphene films respectively. The defective nature and the defect density of the graphene films were determined from the Raman experiments. Field effect scanning electron microscopy, transmission electron microscopy and atomic force microscopy were used to study the surface morphology of the multilayer graphene films. The film topography was sensitive to temperature and time of growth. A suitable growth mechanism has been proposed to explain the topographical observations. The large surface area of the multilayer films was found to be suitable for hydrogen sensor applications and the sensing results were correlated with the morphology of the grown films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Basu, P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1–21 (2012)

    Article  Google Scholar 

  2. S.K. Hazra, S. Basu, Chemical modification of graphene and applications for chemical sensors, in Chemical Functionalization of Carbon Nanomaterials-Chemistry and Applications, ed. by V.K. Thakur, M.K. Thakur (CRC Press, Taylor and Francis, Boca Raton, 2015), pp. 914–937

    Chapter  Google Scholar 

  3. M. Miculescu, V.K. Thakur, F. Miculescu, S.L. Voicu, Graphene-based polymer nanocomposite membranes: a review. Polym. Adv. Technol. 27(7), 844–859 (2016)

    Article  Google Scholar 

  4. Y.M. Chang, H. Kim, J.H. Lee, Y.W. Song, Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers. Appl. Phys. Lett. 97, 211102 (2010)

    Article  Google Scholar 

  5. A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin, Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017–2021 (2007)

    Article  Google Scholar 

  6. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008)

    Article  Google Scholar 

  7. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  Google Scholar 

  8. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009)

    Article  Google Scholar 

  9. L.P. Ma, W.C. Ren, Z.L. Dong, L.Q. Liu, H.M. Cheng, Chin. Sci. Bull. 57(23), 2995–2999 (2012). doi:10.1007/s11434-012-5335-4

    Article  Google Scholar 

  10. J.I. Paredes, S.V. Rodil, P.S. Fernandez, A.M. Alonso, J.M.D. Tascon, Atomic force and scanning tunnelling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25(10), 5957–5968 (2009)

    Article  Google Scholar 

  11. K.H. Liao, A. Mittal, S. Bose, C. Leighton, K.A. Mkhoyan, C.W. Macosko, Aqueous only route toward graphene from graphite oxide. ACS Nano 5, 1253–1258 (2011)

    Article  Google Scholar 

  12. Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner, D. Chen, R.S. Ruoff, Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4(2), 1227–1233 (2010)

    Article  Google Scholar 

  13. F. Hauquier, D. Alamarguy, P. Viel, S. Noël, A. Filoramo, V. Hucd, F. Houzéa, S. Palacin, Conductive-probe AFM characterization of graphene sheets bonded to gold surfaces. Appl. Surf. Sci. 258, 2920–2926 (2012)

    Article  Google Scholar 

  14. O. Albrektsen, R.L. Eriksen, S.M. Novikov, D. Schall, M. Karl, S.I. Bozhevolnyi, A.C. Simonsen, High resolution imaging of few-layer graphene. J. Appl. Phys. 111, 064305 (2012)

    Article  Google Scholar 

  15. H. Hiura, H. Miyazaki, K. Tsukagoshi, Determination of the number of graphene layers: discrete distribution of the secondary electron intensity stemming from individual graphene layers. Appl. Phys. Express 3, 095101 (2010). (The Japan Society of Applied Physics)

    Article  Google Scholar 

  16. D. Dutta, A. Hazra, J. Das, S.K. Hazra, V.N. Lakshmi, S.K. Sinha, A. Gianonchelli, C.K. Sarkar, S. Basu, Growth of multilayer graphene by chemical vapor deposition (CVD) and characterizations. J. Nanomater. Mol. Nanotechnol. 3(5), 004 (2014). doi:10.4172/2324-8777.S1-004

    Google Scholar 

  17. C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, F.-R. Chen, L.-J. Li, Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett. 11, 3612–3616 (2011). doi:10.1021/nl201362n

    Article  Google Scholar 

  18. W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49, 4122–4130 (2011)

    Article  Google Scholar 

  19. A. Das, B. Chakraborty, A.K. Sood, Raman spectroscopy of graphene on different substrates and influence of defects. Bull. Mater. Sci. 31, 579–584 (2008)

    Article  Google Scholar 

  20. Q. Huang, D. Zeng, S. Tian, C. Xie, Synthesis of defect graphene and its application for room temperature humidity sensing. Mater. Lett. 83, 76–79 (2012)

    Article  Google Scholar 

  21. A.-Y. Lu, S.-Y. Wei, C.-Y. Wu, Y. Hernandez, T.-Y. Chen, T.-H. Liu, C.-W. Pao, F.-R. Chen, L.-J. Li, Z.-Y. Juang, Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Adv. 2, 3008–3013 (2012)

    Article  Google Scholar 

  22. Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, J. Hou, Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 5(4), 3385–3390 (2011). doi:10.1021/nn200854p

    Article  Google Scholar 

  23. Z. Ni, Y. Wang, T. Yu, Z. Shen, Raman spectroscopy and imaging of graphene. Nano Res 1, 273–291 (2008)

    Article  Google Scholar 

  24. H. Zhang, P.X. Feng, Fabrication and characterization of few-layer graphene. Carbon 48, 359–364 (2010)

    Article  Google Scholar 

  25. D. Dutta, A. Hazra, S.K. Hazra, J. Das, S. Bhattacharyya, C.K. Sarkar, S. Basu, Performance of a CVD grown graphene based planar device for hydrogen gas sensor. Meas. Sci. Technol. 26, 115104 (2015)

    Article  Google Scholar 

  26. Y. You, V.N. Lakshmi, S.K. Sinha, D. Dutta, C.K.Sarkar, S. Basu, AFM Characterization of Multilayered Graphene Film Used as Hydrogen Sensor. in ASEE 2014 Zone I Conference, University of Bridgeport, Bridgpeort, 2014

  27. D. Dutta, S.K. Hazra, J. Das, C.K. Sarkar, S. Basu, Temperature- and hydrogen-gas-dependent reversible inversion of n-/p- type conductivity in CVD-grown multilayer graphene (MLG) film. J. Electron. Mater. 45(6), 2861–2869 (2016). doi:10.1007/s11664-016-4381-0

    Article  Google Scholar 

  28. D. Dutta, S.K. Hazra, J. Das, C. Sarkar, S. Basu, Studies on p-TiO2/n-graphene heterojunction for hydrogen detection. Sens. Actuators B 212, 84–92 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

D. Dutta thankfully acknowledges CSIR, Government of India for providing the junior research fellowship to carry out the work. S.K. Hazra is thankful to IC Design and Fabrication Centre, Department of ETCE, Jadavpur University, India for providing the collaborative research opportunity. The authors gratefully acknowledge the help of Prof. S. Basumajumdar, Materials Science Centre, IIT Kharagpur, India for TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, D., Bontempi, E., You, Y. et al. Surface topography and hydrogen sensor response of APCVD grown multilayer graphene thin films. J Mater Sci: Mater Electron 28, 157–166 (2017). https://doi.org/10.1007/s10854-016-5506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5506-1

Keywords

Navigation