Skip to main content
Log in

Effect of temperature on dielectric and electrical properties of Co–Zr doped barium hexaferrites prepared by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present research, temperature dependence of dielectric properties of cobalt–zirconium substituted barium hexaferrites, fabricated using citric acid sol gel method, has been reported. The dielectric constant, loss tangent and A.C. conductivity were investigated on the circular pellets in temperature range 30–350 °C and frequency range 10 kHz–1 MHz using impedance analyzer. This paper also presents impedance (Z*) and electric modulus (M*) analysis of all the samples. The single semi-circular arcs, observed in impedance Nyquist plots, suggest the dominance of grain boundaries in the conduction process. Dielectric constant and dielectric loss tangent show very small variation up to 200–250 °C temperature and abrupt increase afterwards up to 350 °C. Thus, these ferrites can be successfully implemented in the practical applications like capacitors, microwave devices etc. up to 250 °C, without any significant change in properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Jamalian, J. Magn. Magn. Mater. 378, 217–220 (2015). doi:10.1016/j.jmmm.2014.11.047

    Article  Google Scholar 

  2. S.B. Narang, P. Kaur, S. Bahel, C. Singh, J. Magn. Magn. Mater. 405, 17–21 (2016). doi:10.1016/j.jmmm.2015.12.044

    Article  Google Scholar 

  3. R.C. Pullar, Prog. Mater Sci. 57, 1191 (2012). doi:10.1016/j.pmatsci.2012.04.001

    Article  Google Scholar 

  4. Z. Li, H.Q. Fan, J.K. Wang, S.J. Jia, J. Mater. Sci. Mater. Electron. 25, 5581 (2014)

    Article  Google Scholar 

  5. R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, J. Magn. Magn. Mater. 381, 1 (2015). doi:10.1016/j.jmmm.2014.12.059

    Article  Google Scholar 

  6. E. Kiani, A.S.H. Rozatian, M.H. Yousefi, J. Magn. Magn. Mater. 361, 25–29 (2014). doi:10.1016/j.jmmm.2014.02.042

    Article  Google Scholar 

  7. S.B. Narang, I.S. Hudiara, J. Ceram. Process. Res. 7(2), 113–116 (2006)

    Google Scholar 

  8. Z. Li, H.Q. Fan, Solid State Ion. 180, 1139 (2009)

    Article  Google Scholar 

  9. Y. Song, J. Zheng, M. Sun, S. Zhao, J. Mater. Sci. Mater. Electron. 27(4), 4131–4138 (2016)

    Article  Google Scholar 

  10. Y. Chen, X. Ren, J. Mater. Sci. Mater. Electron. 27(1), 772–775 (2016)

    Article  Google Scholar 

  11. M.M. Rashad, I.A. Ibrahim, J. Mater. Sci. Mater. Electron. 22, 1796 (2011)

    Article  Google Scholar 

  12. C.L. Yuan, J. Mater. Sci. Mater. Electron. 27(5), 4908–4912 (2016)

    Article  Google Scholar 

  13. M. Ahmed, R. Grössinger, M. Kriegisch, F. Kubel, M.U. Rana, Curr. Appl. Phys. 12, 1413 (2012). doi:10.1016/j.cap.2012.02.038

    Article  Google Scholar 

  14. S.B. Narang, S.K. Chawla, R.K. Mudsainiyan, K. Pubby, Integr. Ferroelectr. 167, 98–106 (2015). doi:10.1080/10584587.2015.1106882

    Article  Google Scholar 

  15. S.K. Chawla, R.K. Mudsainiyan, S.S. Meena, S.M. Yusuf, J. Magn. Magn. Mater. 350, 23–29 (2014)

    Article  Google Scholar 

  16. M. Puri, S. Bahel, S.B. Narang, J. Electron. Mater. 45(2), 959–969 (2016). doi:10.1007/s11664-015-4244-0

    Article  Google Scholar 

  17. S.B. Narang, D. Kaur, K. Pubby, Mater. Sci. Pol. (2015). doi:10.1515/msp-2015-0034

    Google Scholar 

  18. K.W. Wagner, Annalen de Physik 40(5), 817 (1973). doi:10.1002/andp.19133450502

    Google Scholar 

  19. M.T. Sabestian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, 2010)

    Google Scholar 

  20. R.B. Jotania, R.B. Khomane, C.C. Chauhan, S.K. Manon, B.D. Kulkarni, J. Magn. Magn. Mater. 320, 1095–1101 (2008). doi:10.1016/j.jmmm.2007.10.032

    Article  Google Scholar 

  21. Z. Li, H. Fan, S. Jia, L. Song, J. Wang, Solid State Ion. 269, 14–18 (2015)

    Article  Google Scholar 

  22. Z. Li, H.Q. Fan, J. Appl. Phys. 106, 054102 (2009)

    Article  Google Scholar 

  23. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  Google Scholar 

  24. G. Kumar, S. Sharma, R.K. Kotnala, J. Shah, S.E. Shrisath, K.M. Batoo, M. Singh, J. Mol. Struct. 1051, 336–344 (2013). doi:10.1016/j.molstruc.2013.08.019

    Article  Google Scholar 

  25. S.B. Narang, D. Kaur, K. Pubby, Microw. Opt. Technol. Lett. 58(7), 1679–1686 (2016)

    Article  Google Scholar 

  26. A.K. Jonscher, Universal Relaxation Law (Chalsea Dielectric Press, London, 1996)

    Google Scholar 

  27. R.K. Mudsainiyan, S.K. Chawla, S.S. Meena, J. Alloys Compd. 615, 875–881 (2014). doi:10.1016/j.jallcom.2014.07.035

    Article  Google Scholar 

  28. N.K. Singh, P. Kumar, A. Kumar, S. Sharma, J. Eng. Technol. Res. 4(6), 104–113 (2012). doi:10.5897/JETR12.002

    Google Scholar 

  29. R. Waser, T. Baiatu, K.H. Hardti, J. Am. Ceram. Soc. 73, 1654 (1990)

    Article  Google Scholar 

  30. S.B. Narang, D. Kaur, K. Pubby, Ferroelectrics 486(1), 74–85 (2015). doi:10.1080/00150193.2015.1100033

    Article  Google Scholar 

  31. N.K. Singh, P. Kumar, A.K. Sharma, R.N.P. Chaudhary, Mater. Sci. Appl. 2, 1593 (2011). doi:10.4236/msa.2012.36053

    Google Scholar 

  32. K. Subrat, P. Kumar, Process. Appl. Ceram. 7, 181–187 (2013). doi:10.2298/PAC1304181K

    Article  Google Scholar 

  33. M.M. Costa, G.F.M. Pires, A.J. Terezo, M.P.F. Graca, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011). doi:10.1063/1.3615935

    Article  Google Scholar 

  34. Priyanka, A.K. Jha, Bull. Mater. Sci. 36(1), 135–137 (2013). doi:10.1007/s12034-013-0420-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhleen Bindra Narang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pubby, K., Narang, S.B., Chawla, S.K. et al. Effect of temperature on dielectric and electrical properties of Co–Zr doped barium hexaferrites prepared by sol–gel method. J Mater Sci: Mater Electron 27, 11220–11230 (2016). https://doi.org/10.1007/s10854-016-5242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5242-6

Keywords

Navigation