Skip to main content

Advertisement

Log in

Optical and dielectric characterisation of Ceria nanocrystals synthesized by an auto-igniting combustion technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline Ceria (CeO2) was synthesized through auto-ignited combustion technique. The X-ray diffraction studies of CeO2 nanoparticles have shown that the as-prepared powder was single phase, crystalline and has a face centred cubic structure. The phase purity of the powder was further examined using Fourier Transform Infrared and Raman spectroscopic techniques. The transmission electron microscopic studies have shown that the particle size of the as prepared powder was in the range of 30–40 nm. The band gap of nanoparticles as calculated from the absorption spectrum was found to be 3.51 eV. The photoluminescent spectrum of the samples exhibited a number of emission peaks which forms a broad band emission between 400 and 500 nm originating from 2T2g(5d)–2F7/2, 2F5/2(4f) transition of Ce3+ ion due to spin–orbit coupling under the influence of O h crystal field. The nanopowders were sintered to about 95 % of the theoretical density at 1450 °C for 2 h. The microstructure of the sintered surface was examined using scanning electron microscopy. The dielectric constant (εr) and loss tangent (tanδ) at 5 MHz are found to be about 25.1 and 0.0118 respectively. The complex impedance plots show semicircular arcs resolving at high temperature which confirms the existence of the non-Debye type of relaxation in the sintered CeO2 samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Gleiter, Acta Mater. 48, 1 (2000)

    Article  Google Scholar 

  2. P. Moriarty, Rep. Prog. Phys. 64, 297 (2001)

    Article  Google Scholar 

  3. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Schalkwijk, Nat. Mater. 4, 366 (2005)

    Article  Google Scholar 

  4. C. Suryanarayana, Bull. Mater. Sci. 17, 307 (1994)

    Article  Google Scholar 

  5. C. Sun, H. Li, L. Chen, Energy Environ. Sci. 5, 8475 (2012)

    Article  Google Scholar 

  6. R. Kostic, S. Askrabic, Z. Dohcevic-Mitrovic, Z.V. Popovic, Appl. Phys. A 90, 679 (2008)

    Article  Google Scholar 

  7. T. Hibino, K. Ushiki, Y. Kuwahara, Solid State Ion. 93, 309 (1997)

    Article  Google Scholar 

  8. Y.M. Zhang, M. Hida, H. Hashimoto, Z.P. Luo, S.X. Wang, J. Mater. Sci. 35, 5389 (2004)

    Article  Google Scholar 

  9. H. Inaba, H. Tagawa, Solid State Ion. 83, 1 (1996)

    Article  Google Scholar 

  10. A. Trovarelli, F. Zamar, J. Llorca, C. Leitenburg, G. Dolcetti, J.T. Kiss, J. Catal. 169, 490 (1997)

    Article  Google Scholar 

  11. S.H. Lee, Z.Y. Lu, S.V. Babu, E. Matijevic, J. Mater. Res. 17, 2744–2749 (2002)

    Article  Google Scholar 

  12. S. Tsunekawa, R. Sahara, Y. Kawazoe, A. Kasuya, Mater. Trans., JIM 41, 1104 (2000)

    Article  Google Scholar 

  13. A. Trovarelli, C. de Leitenburg, M. Boaro, G. Dolcetti, Catal. Today 50, 353 (1999)

    Article  Google Scholar 

  14. X. Liu, S. Chen, X. Wang, J. Lumin. 127, 650 (2007)

    Article  Google Scholar 

  15. W.C. Choi, H.N. Lee, Y. Kim, H.M. Park, E.K. Kim, Jpn. J. Appl. Phys. 38, 6392 (1999)

    Article  Google Scholar 

  16. G. Fei, L.I. Guo-hua, Z. Jian-Hui, Q. Fu-Guang, Y. Zhen-Yu, L. Zhi-kai, W. Zhan-Guo, L. Lan-Ying, Chin. Phys. Lett. 18, 443 (2001)

    Article  Google Scholar 

  17. C. Enoiu, A. Volceanov, E. Volceanov, R. Gavrila, Rom. J. Phys. 49, 777 (2004)

    Google Scholar 

  18. C. Xu, X. Qu, NPG Asia Mater. (2014). doi:10.1038/am.2013.88

    Google Scholar 

  19. M. Li, P. Shi, C. Xu, J.S. Ren, X.G. Qu, Chem. Sci. 4, 2536 (2013)

    Article  Google Scholar 

  20. M. Ornatska, E. Sharpe, D. Andreescu, S. Andreescu, Anal. Chem. 83, 4273 (2011)

    Article  Google Scholar 

  21. I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Nanoscale 3, 1411 (2011)

    Article  Google Scholar 

  22. C. Mandoli, F. Pagliari, S. Pagliari, G. Forte, P. Di Nardo, S. Licoccia, E. Traversa, Adv. Funct. Mater. 20, 1617 (2010)

    Article  Google Scholar 

  23. T. Mokkelbost, I. Kaus, T. Grande, M. Einarsrud, Chem. Mater. 16, 5489 (2004)

    Article  Google Scholar 

  24. M. Biswas, P.K. Ojha, C.P. Prasad, N.M. Gokhale, S.C. Sharma, Mater. Sci. Appl. 3, 110 (2012)

    Google Scholar 

  25. K. Jiang, J. Meng, Z. He, Y. Ren, Q. Su, Sci. China, Ser. B: Chem. 42, 159 (1999)

    Article  Google Scholar 

  26. C. Laberty-Robert, J.W. Long, E.M. Lucas, K.A. Pettigrew, R.M. Stroud, M.S. Doescher, D.R. Rolison, Chem. Mater. 18, 50 (2006)

    Article  Google Scholar 

  27. M. Hirano, E. Kato, J. Am. Ceram. Soc. 79, 777 (1996)

    Article  Google Scholar 

  28. A.I.Y. Tok, F.Y.C. Boney, Z. Dong, X.L. Sun, J. Mater. Proc. Tech. 190, 217 (2007)

    Article  Google Scholar 

  29. F. Meng, H. Li, J. Gongand, Z. Fan, J. Mater. Sci: Mater. Electron. (2016). doi:10.1007/s10854-016-4857-y

    Google Scholar 

  30. J. Guo, X. Xin, X. Zhang, S. Zhang, J. Nanoparticle Res. 11, 737 (2009)

    Article  Google Scholar 

  31. M. Kamaruddin, P.K. Ajikumar, R. Nithya, A.K. Tyagi, B. Raj, Scripta Mater. 50, 417 (2004)

    Article  Google Scholar 

  32. L. Madler, W.J. Stark, S.E. Pratsinis, J. Mater. Res. 17, 1356 (2002)

    Article  Google Scholar 

  33. X. Chu, W. Chung, L.D. Schmidt, J. Am. Ceram. Soc. 76, 2115 (1993)

    Article  Google Scholar 

  34. P.L. Chen, I.W. Chen, J. Am. Ceram. Soc. 76, 1577 (1993)

    Article  Google Scholar 

  35. X. Yu, F. Li, X. Ye, X. Xin, Z. Xue, J. Am. Ceram. Soc. 83, 964 (2000)

    Article  Google Scholar 

  36. O.A. Serra, V. Severino, P. Calefi, J. Alloys. Compd. 323–324, 667 (2001)

    Article  Google Scholar 

  37. Y.X. Li, X.Z. Zhou, Y. Wang, X.Z. You, Mater. Lett. 58, 245 (2003)

    Article  Google Scholar 

  38. F.S. Sangsefidi, M. Sabet, M. Salavati-Niasari, J. Mater. Sci: Mater. Electron. (2016). doi:10.1007/s10854-016-4904-8

    Google Scholar 

  39. F. Li, R.J. Ran, M. Jaroniec, S.Z. Qiao, Nanoscale (2015). doi:10.1039/C5NR05299H

    Google Scholar 

  40. S. Cao, B. Ravikumar, S. Hussain, A. Ayeshamariam, N. Aslam, K. Naseer, J. Mater. Sci: Mater. Electron. (2015). doi:10.1007/s10854-015-3967-2

    Google Scholar 

  41. R.D. Purohit, B.P. Sharma, K.T. Pillai, A.K. Tyagi, Mater. Res. Bull. 36, 2711 (2001)

    Article  Google Scholar 

  42. S.T. Aruna, K.C. Patil, Nanostruct. Mater. 10, 955 (1998)

    Article  Google Scholar 

  43. S.T. Aruna, S. Ghosh, K.C. Patil, Int. J. Inorg. Mater. 3, 387–392 (2001)

    Article  Google Scholar 

  44. I. Robert, L. Radu, Mater. Chem. Phys. 115, 645 (2009)

    Article  Google Scholar 

  45. R.C. Patil, S. Radhakrishnan, S. Pethkar, K. Vijayamohan, J. Mat. Res. 16, 1982 (2001)

    Article  Google Scholar 

  46. V. Bolis, G. Magnacca, G. Cerrato, C. Morterra, Thermochim. Acta 379, 147 (2001)

    Article  Google Scholar 

  47. W.B. Lacina, P.S. Pershan, Phys. Rev. B 1, 1765 (1970)

    Article  Google Scholar 

  48. H. Padma Kumar, C. Vijaya kumar, C.N. George, S. Solomon, R. Jose, J.K. Thomas, J. Koshy, J. Alloy. Compd. 458, 528 (2008)

    Article  Google Scholar 

  49. A.S. Ansari, J. Semicond. 31, 053001 (2010)

    Article  Google Scholar 

  50. Z. Wang, Z. Quan, J. Lin, Inorg. Chem. 46, 5237 (2007)

    Article  Google Scholar 

  51. M. Farahmandjou, M. Zarinkamar, J. Ultrafine Grained Nanostruct. Mater. 48, 5 (2015)

    Google Scholar 

  52. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Publishing Company Ltd, New York, 1974)

    Book  Google Scholar 

  53. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423 (2009)

    Article  Google Scholar 

  54. L. Yin, Y. Wang, G. Pang, Y. Koltypin, A. Gedanken, J. Colloid Interface Sci. 246, 78 (2002)

    Article  Google Scholar 

  55. C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai, Chem. Mater. 17, 4514 (2005)

    Article  Google Scholar 

  56. M.Y. Chen, X.T. Zu, X. Xiang, H.L. Zhang, Phys. B 389, 263 (2007)

    Article  Google Scholar 

  57. S. Nakamura, G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997), pp. 216–221

    Book  Google Scholar 

  58. K. Bando, K. Sakano, Y. Noguchi, Y. Shimizu, J. Light Vis. Environ. 22, 1–2 (1998)

    Article  Google Scholar 

  59. R.R. Jacobs, W.F. Krupke, M.J. Weber, Appl. Phys. Lett. 33(5), 410 (1978)

    Article  Google Scholar 

  60. P. Dorenbos, J. Lumin. 91, 155 (2000)

    Article  Google Scholar 

  61. N.I. Santha, M.T. Sebastian, P. Mohanan, N.M.C.N. Alford, K. Sarma, R.C. Pullar, S. Kamba, A. Pashkin, P. Samukhina, J. Petzelt J. Am. Ceram. Soc. 87(7), 1233 (2004)

    Article  Google Scholar 

  62. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007)

    Article  Google Scholar 

  63. J. Plocharski, W. Wieczoreck, Solid State Ion. 28–30, 1014 (1982)

    Google Scholar 

  64. N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Phys. Chem. Solids 73, 713 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors H. Padma Kumar and Meenu Venugopal acknowledges the financial aid from Science & Engineering Research Board (SERB), Department of Science and Technology, Ministry of Science and Technology, Government of India under the scheme Fast Track Scheme for Young Scientists (SR/FTP/PS-070/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Padma Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venugopal, M., Saravana Kumar, S., Nissamudeen, K.M. et al. Optical and dielectric characterisation of Ceria nanocrystals synthesized by an auto-igniting combustion technique. J Mater Sci: Mater Electron 27, 9496–9502 (2016). https://doi.org/10.1007/s10854-016-5000-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5000-9

Keywords

Navigation