Skip to main content
Log in

Effect of multi-walled carbon nanotube (MWCNT) concentration on thermomechanical reliability of MWCNT-reinforced solderable isotropic polymer nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotube (MWCNT)-reinforced solderable isotropic polymer nanocomposites (SIPNs) containing low-melting-point alloys (LMPAs) were developed to enhance the interconnection properties of solderable isotropic polymer composites (SIPCs). In this study, the reliability properties of MWCNT-reinforced SIPN assemblies with different MWCNT concentrations were investigated through thermal shock (−55–125 °C, 1000 cycles) and high-temperature and high-humidity (85 °C, 85 %RH, 1000 h) tests. In addition, the interfacial microstructure and fracture mode of the MWCNT-reinforced SIPN joint were investigated. All the MWCNT-reinforced SIPN assemblies, with different MWCNT concentrations, showed stable electrical reliability during reliability tests owing to the formation of a metallurgical interconnection between the corresponding metallization layers by molten LMPA fillers. The mechanical reliability properties of all the MWCNT-reinforced SIPN assemblies degraded owing to excessive intermetallic compound (IMC) layer growth. However, the mechanical reliability properties of MWCNT-reinforced SIPNs with a low MWCNT concentration (<1 wt%) were superior to those of the SIPNs without MWCNTs owing to the initial high bonding strength of the former due to the reinforcing effect of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Shen, W. Huang, L. Wu, Y. Hu, M. Ye, Compos. Sci. Technol. 67, 3041–3050 (2007)

    Article  Google Scholar 

  2. H. Jiang, M.J. Yim, W. Lin, C.P. Wong, IEEE Trans. Compon. Packag. Technol. 32, 754–758 (2009)

    Article  Google Scholar 

  3. S. Yu, M.N. Tong, G. Critchlow, J. Appl. Polym. Sci. 111, 2957–2962 (2009)

    Article  Google Scholar 

  4. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Prog. Polym. Sci. 35, 1350–1375 (2010)

    Article  Google Scholar 

  5. O. Valentino, M. Sarno, N.G. Rainone, M.R. Nobile, P. Ciambelli, H.C. Neitzert, G.P. Simon, Physica E 40, 2440–2445 (2008)

    Article  Google Scholar 

  6. D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 76, 2868–2870 (2000)

    Article  Google Scholar 

  7. Z. Ounaies, C. Park, K.E. Wise, E.J. Siochi, J.S. Harrison, Compos. Sci. Technol. 63, 1637–1646 (2003)

    Article  Google Scholar 

  8. B.X. Yang, J.H. Shi, K.P. Pramoda, S.H. Goh, Compos. Sci. Technol. 68, 2490–2497 (2008)

    Article  Google Scholar 

  9. J.D. Fidelus, E. Wiesel, F.H. Gojny, K. Schulte, H.D. Wagner, Compos. Pt. A-Appl. Sci. Manuf. 36, 1555–1561 (2005)

    Article  Google Scholar 

  10. D.J. Yang, Q. Zhang, G. Chen, S.F. Yoon, J. Ahn, S.G. Wang, Q. Zhou, Q. Wang, J.Q. Li, Phys. Rev. B 66, 16544 (2002)

    Google Scholar 

  11. B.S. Yim, J.M. Kim, S.H. Jeon, S.H. Lee, J. Kim, J.G. Han, M. Cho, Mater. Trans. 50, 2649–2655 (2009)

    Article  Google Scholar 

  12. B.S. Yim, Y. Kwon, S.H. Oh, J. Kim, Y.E. Shin, S.H. Lee, J.M. Kim, Microelectron. Reliab. 52, 1165–1173 (2012)

    Article  Google Scholar 

  13. B.S. Yim, J.M. Kim, Mater. Trans. 51, 2329–2331 (2010)

    Article  Google Scholar 

  14. B.S. Yim, B.H. Lee, J. Kim, J.M. Kim, J. Mater. Sci. Mater. Electron. 25, 5208–5217 (2014)

    Article  Google Scholar 

  15. B.S. Yim, J.M. Kim, J. Mater. Sci. Mater. Electron. 26, 1678–1689 (2015)

    Article  Google Scholar 

  16. Y. Hwang, M. Kim, J. Kim, Thin Solid Films 545, 116–123 (2013)

    Article  Google Scholar 

  17. A. Eitan, K. Jiang, D. Dukes, R. Andrews, L.S. Schadler, Chem. Mater. 15, 3198–3201 (2003)

    Article  Google Scholar 

  18. M. Abdalla, D. Dean, D. Adibempe, E. Nyairo, P. Robinson, G. Thompson, Polymer 48, 5662–5670 (2007)

    Article  Google Scholar 

  19. H. Peng, L.B. Alemany, J.L. Margrave, V.N. Khabashesku, J. Am. Chem. Soc. 125, 15174–15182 (2003)

    Article  Google Scholar 

  20. C.Z. Liu, W. Zhang, J. Mater. Sci. 44, 149–153 (2009)

    Article  Google Scholar 

  21. T.Y. Kang, Y.Y. Xiu, C.Z. Liu, L. Hui, J.J. Wang, W.P. Tong, J. Alloys Compd. 509, 1785–1789 (2011)

    Article  Google Scholar 

  22. Q.S. Zhu, Z.F. Zhang, Z.G. Wang, J.K. Shang, J. Mater. Res. 23, 78–82 (2008)

    Article  Google Scholar 

  23. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, K.N. Tu, J. Appl. Phys. 97, 024508 (2005)

    Article  Google Scholar 

  24. M. Onishi, H. Fujibuchi, Trans. JIM 16, 539–547 (1975)

    Google Scholar 

  25. H.C. Bhedwar, K.K. Ray, S.D. Kulkarni, V. Balasubramanlan, Scripta Metall. 6, 919–922 (1972)

    Article  Google Scholar 

  26. P.J. Shang, Z.Q. Liu, D.X. Li, J.K. Shang, J. Electron. Mater. 38, 2579–2584 (2009)

    Article  Google Scholar 

  27. J.W. Yoon, S.B. Jung, J. Alloys Compd. 359, 202–208 (2003)

    Article  Google Scholar 

  28. L. Quan, D. Frear, D. Grivas, J.W. Morris Jr, J. Electron. Mater. 16, 203–208 (1987)

    Article  Google Scholar 

  29. P.L. Tu, Y.C. Chan, J.K.L. Lai, I.E.E.E. Trans, Compon. Packag. Manuf. Technol. B 20, 87–93 (1997)

    Article  Google Scholar 

  30. Y.C. Chan, P.L. Tu, A.C.K. So, J.K.L. Lai, IEEE Trans. Compon. Packag. Manuf. Technol. B 20, 463–469 (1997)

    Article  Google Scholar 

  31. X. Ma, Y. Qian, F. Yoshida, J. Alloys Compd. 334, 224–227 (2002)

    Article  Google Scholar 

  32. J.H.L. Pang, K.H. Prakash, T.H. Low, Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2004), pp. 109–115

  33. P.T. Vianco, J.J. Stephens, J.A. Rejent, IEEE Trans. Compon. Packag. Manuf. Technol. A 20, 478–490 (1997)

    Article  Google Scholar 

  34. L. Xu, J.H.L. Pang, K.H. Prakash, T.H. Low, IEEE Trans. Compon. Packag. Technol. 28, 408–414 (2005)

    Article  Google Scholar 

  35. C.H. Raeder, L.E. Felton, V.A. Tanzi, D.B. Knorr, J. Electron. Mater. 23, 611–617 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2014007164) and the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20134030200350).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yim, BS., Kim, JM. Effect of multi-walled carbon nanotube (MWCNT) concentration on thermomechanical reliability of MWCNT-reinforced solderable isotropic polymer nanocomposites. J Mater Sci: Mater Electron 27, 9159–9171 (2016). https://doi.org/10.1007/s10854-016-4952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4952-0

Keywords

Navigation