Skip to main content
Log in

Studies on synthesis, structural, surface morphological and electrical properties of Pr6O11–MgO nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We synthesized Pr6O11–MgO nanocomposites through sol–gel route using praseodymium acetate and magnesium acetate tetrahydrate. The grain size and the morphology of the synthesized nanocomposite were characterized using XRD and HRSEM. The elemental compositions of the synthesized samples were analyzed using EDAX spectra. The dielectric constant, tangent loss and AC conductivity of the synthesized samples were studied in the frequency range of 100 Hz–5 MHz at different temperatures (303–573 K) using impedance analyzer. The activation energy was calculated using Arrhenius plot. The results are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, Improved energy storage density in barium strontium titanate by addition of BaOSiO2–B2O3 glass. J. Am. Ceram. Soc. 92, 1871 (2009)

    Article  Google Scholar 

  2. Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, Ba0:4Sr0:6TiO3/MgO composites with enhanced energy storage density and low dielectric loss for solid-state pulse-forming line. Int. J. Appl. Ceram. Technol. 7, E124 (2010)

    Article  Google Scholar 

  3. K. Chen, Y. Pu, N. Xu, X. Luo, Effects of SrO–B2O3–SiO2 glass additvie on densification and energy storage properties of Ba0:4Sr0:6TiO3 ceramics. J. Mater. Sci. Mater. Electron. 23, 1599 (2012)

    Article  Google Scholar 

  4. V.S. Puli, D.K. Pradhan, A. Kumar, R.S. Katiyar, X. Su, C.M. Busta, M. Tomozawa, D.B. Chrisey, Structure and dielectric properties of BaO–B2O3–ZnO-[(BaZr m 00:j 2Ti0:8ÞO3]0:85–[(Ba0:70Ca0:30ÞTiO3]0:15 glass-ceramics for energy storage. J. Mater. Sci. Mater. Electron. 23, 2005 (2012)

    Article  Google Scholar 

  5. T.C.M. Chung, Functionalization of polypropylene with high dielectric properties: applications in electric energy storage. Green Sustain. Chem. 2, 29–37 (2012)

    Article  Google Scholar 

  6. J.-R. Yoon, B.H. Moon, H.Y. Lee, D.Y. Jeong, D.H. Rhie, Design and analysis of electrical properties of a multilayer ceramic capacitor module for DC-link of hybrid electric vehicles. J. Electr. Eng. Technol. 8(4), 808–812 (2013)

    Article  Google Scholar 

  7. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H.-C. zur Loye, Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2, 1697–1733 (2009)

    Article  Google Scholar 

  8. A. Zeb, S.J. Milne, High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites. J. Mater. Sci. Mater. Electron. 26, 9243–9255 (2015)

    Article  Google Scholar 

  9. H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009). 10

    Article  Google Scholar 

  10. X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielect. 03(01), 1330001 (2013)

    Article  Google Scholar 

  11. E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, Energy storage devices for future hybrid electric vehicles. J. Power Sources 168, 2–11 (2007)

    Article  Google Scholar 

  12. Y. Bian, H. Wang, J. Zhai, Low-dielectric-loss barium strontium titanate thin films with MgO buffer layer for tunable microwave devices. J. Electron. Mater. 42(10), 2926–2932 (2013)

    Article  Google Scholar 

  13. W. Shen, B.D. Schrag, M.J. Carter, J. Xie, C. Xu, S. Sun, G. Xiao, J. Appl. Phys. 103(07), 306 (2008)

    Google Scholar 

  14. T. Bauer, Thermophotovoltaics: Basic Principles and Critical Aspects of System Design (Springer-Verlag, Berlin, Heidelberg, 2011)

    Book  Google Scholar 

  15. Metal Work Function, H. Jagannathan, V. Narayanan, S. Brown, Engineering high dielectric constant materials for band-edge CMoS applications. ECS Trans. 16(5), 19–26 (2008)

    Google Scholar 

  16. H.J. Osten, J.P. Liu, P. Gaworzewski, E. Bugiel, P. Zaumseil, High-k gate dielectrics with ultra-low leakage current based on praseodymium oxide, in IEEE, Electron Devices Meeting, 2000. IEDM’00. Technical Digest. International Conference, pp. 653–656

  17. S. Shrestha, F. Marken, J. Elliott, C.M.Y. Yeung, C.E. Mills, S.C. Tsang, Electrochemical deposition of praseodymium oxide on tin-doped indium oxide as a thin sensing film. J. Electrochem. Soc. 153(7), C517–C520 (2006)

    Article  Google Scholar 

  18. C.F. Qiu, H.Y. Chen, Z.L. Xie, M. Wong, H.S. Kwok, Praseodymium oxide coated anode for organic light-emitting diode. Appl. Phys. Lett. 80, 3485 (2002)

    Article  Google Scholar 

  19. W. Wang, P. Lin, Y. Fu, G. Cao, Redox properties and catalytic behavior of praseodymium-modified (Ce–Zr)O2 solid solutions in three-way catalysts. Catal. Lett. 82, 19 (2002)

    Article  Google Scholar 

  20. U. Chon, J.S. Shim, H.M. Jang, Ferroelectric properties and crystal structure of praseodymium-modified bismuth titanate. J. Appl. Phys. 93(8), 4769–4775 (2003)

    Article  Google Scholar 

  21. V. Thangadurai, R.A. Huggins, W. Weppner, Mixed ionic-electronic conductivity in phases in the praseodymium oxide system. J. Solid State Electrochem. 5, 531–537 (2001)

    Article  Google Scholar 

  22. M. Paschanka, R.C. Hoffman, J.J. Schneider, Controlled synthesis and characterization of MgO nanoparticles, thin films and polycrystalline nanorods derived from a Mg(II) single source precursor. J. Mater. Chem. 20, 957–963 (2010)

    Article  Google Scholar 

  23. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures, 2nd edn. (Wiley-Interscience, New York, 1974), p. 599

    Google Scholar 

  24. A. Ashok, T. Somaiah, D. Ravinder, C. Venkateshwarlu, C. Reddy, K. Rao, M. Prasad, Electrical properties of cadmium substitution in nickel ferrites. World J. Condens. Matter Phys. 2, 257–266 (2012)

    Article  Google Scholar 

  25. K.M. Batoo, J.P. Labis, R. Sharma, M. Singh, Ferroelectric and magnetic properties of Nd-doped Bi4–xFeTi3O12 nanoparticles prepared through the egg-white method. Nanoscale Res. Lett. 7, 511 (2012)

    Article  Google Scholar 

  26. T. Kar, R.N.P. Choudhary, Structural dielectric and electrical conducting properties of KB′B′′O6 (B′ = Nb, Ta; B′′ = W, Mo) ceramics. J. Phys. Chem. Solids 62, 1149–1161 (2001)

    Article  Google Scholar 

  27. B.K. Barick, R.N.P. Choudhary, D.K. Pradhan, Phase transition and electrical properties of lanthanum-modified sodium bismuth titanate. Mater. Chem. Phys. 132, 1007–1014 (2012)

    Article  Google Scholar 

  28. A. Shukla, R.N.P. Choudhary, Study of electrical properties of La3 +/Mn4 +-modified PbTiO3 nanoceramics. J. Mater. Sci. 47, 5074–5085 (2012)

    Article  Google Scholar 

  29. S. Pattanayak, A. Priyadarshan, R. Subudhi, R.K. Nayak, R. Padhee, Tailoring of electrical properties of BiFeO3 by praseodymium. J. Adv. Ceram. 2(3), 235–241 (2013)

    Article  Google Scholar 

  30. M.S. Hassan, M.S. Akhtar, K.-B. Shim, O.-B. Yang, Morphological and electrochemical properties of crystalline praseodymium oxide nanorods. Nanoscale Res. Lett. 5(4), 735–740 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Priya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamizh Selvi, K., Alamelumangai, K., Priya, M. et al. Studies on synthesis, structural, surface morphological and electrical properties of Pr6O11–MgO nanocomposite. J Mater Sci: Mater Electron 27, 6457–6463 (2016). https://doi.org/10.1007/s10854-016-4586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4586-2

Keywords

Navigation