Skip to main content
Log in

Optical and electrical properties of Ta-doped ZnSnO3 transparent conducting films by sol–gel

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped and Ta-doped ZnSnO3 thin films with different Ta concentrations were deposited on glass substrates by using sol–gel spin coating method. Effects of Ta concentration (0–4 at.%) on structure, surface morphology, electrical and optical properties were investigated. Single phase and crystallinity deterioration were observed in the XRD spectrum. The porosity rate was calculated by processed SEM figures with different dopant content. XPS spectrum and results of Hall measurement indicated that there might be substitution of Ta5+ for Sn4+ dominantly when doping content is lower than 2 at.% and main substitution of Ta5+ for Zn2+ when doping content is up to 2 at.%. A minimum resistivity of 1.716 Ω cm were obtained for films with 2 at.% Ta. The optical transmittances clearly exhibited absorption edges shift to longer wavelength, and those in the visible range increased up to over 91 % with increasing Ta concentration. The work function of undoped and 2 at.% ZnSnO3 are 5.17 and 5.06 eV respectively, which are higher than ITO, FTO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.S. Ginley, C. Bright, MRS Bull. 25, 15 (2000)

    Article  Google Scholar 

  2. K. Ramamoorthy, M. Jayachandran, K. Sankaranarayanan, P. Misra, L.M. Kukreja, C. Sanjeeviraja, Sol. Energy 77, 193 (2004)

    Article  Google Scholar 

  3. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)

    Article  Google Scholar 

  4. W.J. Lee, Y.K. Fang, J.J. Ho, C.Y. Chen, L.H. Chiou, S.J. Wang, F. Dai, T. Hsieh, R.Y. Tsai, D. Huang, F.C. Ho, Solid State Electron. 46, 477 (2002)

    Article  Google Scholar 

  5. M.G. Helander, Z.B. Wang, J. Qiu, M.T. Greiner, D.P. Puzzo, Z.W. Liu, Z.H. Lu, Science 332, 944 (2011)

    Article  Google Scholar 

  6. L. Castañeda, Mater. Sci. Appl. 02, 1233 (2011)

    Google Scholar 

  7. A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang, T.J. Marks, MRS Bull. 25, 45 (2000)

    Article  Google Scholar 

  8. J.F. Wager, Science 300, 1245 (2003)

    Article  Google Scholar 

  9. J.H. Ko, I.H. Kim, D. Kim, K.S. Lee, T.S. Lee, J.H. Jeong, B. Cheong, Y.J. Baik, W.M. Kim, Thin Solid Films 494, 42 (2006)

    Article  Google Scholar 

  10. T.J. Coutts, D.L. Young, X. Li, W.P. Mulligan, X. Wu, J. Vac. Sci. Technol. A 18, 2646 (2000)

    Article  Google Scholar 

  11. C.-Y. Lo, C.-L. Hsu, Q.-X. Yu, H.-Y. Lee, C.-T. Lee, J. Appl. Phys. 92, 274 (2002)

    Article  Google Scholar 

  12. J.D. Perkins, J.A. del Cueto, J.L. Alleman, C. Warmsingh, B.M. Keyes, L.M. Gedvilas, P.A. Parilla, B. To, D.W. Readey, D.S. Ginley, Thin Solid Films 411, 152 (2002)

    Article  Google Scholar 

  13. Y. Hayashi, K. Kondo, K. Murai, T. Moriga, I. Nakabayashi, H. Fukumoto, K. Tominaga, Vacuum 74, 607 (2004)

    Article  Google Scholar 

  14. V.K. Jain, P. Kumar, M. Kumar, P. Jain, D. Bhandari, Y.K. Vijay, J. Alloys Compd. 509, 3541 (2011)

    Article  Google Scholar 

  15. M.K. Jayaraj, K.J. Saji, K. Nomura, T. Kamiya, H. Hosono, J. Vac. Sci. Technol. B 26, 495 (2008)

    Article  Google Scholar 

  16. J.H. Ko, I.H. Kim, D. Kim, K.S. Lee, T.S. Lee, B. Cheong, W.M. Kim, Appl. Surf. Sci. 253, 7398 (2007)

    Article  Google Scholar 

  17. A. Kurz, M.A. Aegerter, Thin Solid Films 516, 4513 (2008)

    Article  Google Scholar 

  18. A. Kurz, K. Brakecha, J. Puetz, M.A. Aegerter, Thin Solid Films 502, 212 (2006)

    Article  Google Scholar 

  19. T. Minami, MRS Bull. 25, 38 (2000)

    Article  Google Scholar 

  20. T. Minami, T. Miyata, T. Yamamoto, Surf. Coat. Technol. 108–109, 583 (1998)

    Article  Google Scholar 

  21. M. Tadatsugu, S. Hideo, T. Shinzo, S. Hirotoshi, Jpn. J. Appl. Phys. 33, L1693 (1994)

    Article  Google Scholar 

  22. J. Ling-Li, H. Yun-Qiu, L. Le, Chin. J. Inorg. Chem. 28, 437 (2012)

    Google Scholar 

  23. G.N. Darriba, E.L. Muñoz, L.A. Errico, M. Rentería, J. Phys. Chem. C 118, 19929 (2014)

    Article  Google Scholar 

  24. J.-Z. Kong, A.-D. Li, H.-F. Zhai, Y.-P. Gong, H. Li, D. Wu, J. Solid State Chem. 182, 2061 (2009)

    Article  Google Scholar 

  25. S.W. Lee, Y.-W. Kim, H. Chen, Appl. Phys. Lett. 78, 350 (2001)

    Article  Google Scholar 

  26. K. Mahmood, D. Song, S.B. Park, Surf. Coat. Technol. 206, 4730 (2012)

    Article  Google Scholar 

  27. K.S. Kim, W.E. Baitinger, J.W. Amy, N. Winograd, J. Electron Spectrosc. Relat. Phenom. 5, 351 (1974)

    Article  Google Scholar 

  28. E. Atanassova, D. Spassov, Appl. Surf. Sci. 135, 71 (1998)

    Article  Google Scholar 

  29. H. Yoon, S. Kim, H. Park, G. Nam, Y. Kim, J.-Y. Leem, M. Kim, B. Kim, Y. Kim, I. Ji, Y. Park, I. Kim, S.-H. Lee, J. Jung, J. Kim, J. Kim, J. Korean Phys. Soc. 64, 109 (2014)

    Article  Google Scholar 

  30. S.V.J. Chandra, S. Uthanna, G.M. Rao, Appl. Surf. Sci. 254, 1953 (2008)

    Article  Google Scholar 

  31. X.-L. Li, B.-Z. Lin, B.-H. Xu, Z.-J. Chen, Q.-Q. Wang, J.-D. Kuang, H. Zhu, J. Mater. Chem. 20, 3924 (2010)

    Article  Google Scholar 

  32. M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, J. Szuber, Thin Solid Films 490, 36 (2005)

    Article  Google Scholar 

  33. X.-F. Chu, Y.-Q. He, Y.-M. Li, H.-Z. Huang, D.-Y. Liu, H.-M. Chen, W.-Y. Li, Chin. J. Inorg. Chem. 5, 034 (2014)

    Google Scholar 

  34. J.C.C. Fan, J.B. Goodenough, J. Appl. Phys. 48, 3524 (1977)

    Article  Google Scholar 

  35. P.K. Biswas, A. De, L.K. Dua, L. Chkoda, Bull. Mater. Sci. 29, 323 (2006)

    Article  Google Scholar 

  36. Y.-G. Kang, H.-J. Kim, H.-G. Park, B.-Y. Kim, D.-S. Seo, J. Mater. Chem. 22, 15969–15975 (2012)

    Article  Google Scholar 

  37. K.G. Saw, K. Ibrahim, Y.T. Lim, M.K. Chai, Thin Solid Films 515, 2879 (2007)

    Article  Google Scholar 

  38. R.W. Mar, J. Phys. Chem. Solids 33, 220 (1972)

    Article  Google Scholar 

  39. K. Uematsu, N. Mizutani, M. Kato, J. Mater. Sci. 22, 915 (1987)

    Article  Google Scholar 

  40. A. Ferreira da Silva, N. Veissid, C.Y. An, J. Caetano de Souza, A.V. Batista da Silva, P. César Farias, M.T.F. da Cruz, J. Appl. Phys. 78, 5822 (1995)

    Article  Google Scholar 

  41. A.A. Dakhel, Opt. Mater. 31, 691 (2009)

    Article  Google Scholar 

  42. E. Gao, W. Wang, M. Shang, J. Xu, Phys. Chem. Chem. Phys. 13, 2887 (2011)

    Article  Google Scholar 

  43. K.-P. Wang, H. Teng, Phys. Chem. Chem. Phys. 11, 9489 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqiu He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Li, Y., Chen, X. et al. Optical and electrical properties of Ta-doped ZnSnO3 transparent conducting films by sol–gel. J Mater Sci: Mater Electron 27, 6166–6174 (2016). https://doi.org/10.1007/s10854-016-4544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4544-z

Keywords

Navigation