Skip to main content
Log in

In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article we report the synthesis of CuS nanoparticle with distinguishable surface plasmonic resonance (SPR) peaks in near infrared region. For this purpose in situ synthesis (one-step fabrication) has been used to prepare CuS nanoparticles in PMMA polymer matrix at room temperature. The X-ray diffraction spectrum confirms the formation of CuS nanoparticles. The transmittance spectra of nano-composite samples reveal that the samples have a good transparency. The absorption spectra show a broad absorption peak in the wavelength region from 570 to 980 nm which is a characteristic SPR peak for CuS nanoparticle. An increase of refractive index was observed for the samples containing CuS nanoparticles. The linear relationship between the refractive index and volume fraction was observed. The appearance of SPR peak in refractive index spectra was attributed to CuS nanoparticles. Shifting of absorption edge to lower photon energy has been observed for nano-composite samples. The direct energy bandgap of nano-composite samples are reduced compare to pure PMMA polymer. The plot between the direct energy band gap and refractive index reveals that the decrease in bandgap energy is associated with the increase in index of refraction. The increase of optical dielectric constant can be ascribed to the formation of CuS nanoparticles. The low band gap of CuS nanoparticles in the present work reveals their importance for applications in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Li, J. Wu, Q. Qin, Z. Li, X. Huang, Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures. Powder Technol. 198(2), 267–274 (2010)

    Article  Google Scholar 

  2. R.S. Christy, J.T.T. Kumaran, Phase transition in CuS nanoparticles. J. Non-Oxide Glas. 6(1), 13–22 (2014)

    Google Scholar 

  3. M. Saranya, C. Santhosh, R. Ramachandran, P. Kollu, P. Saravanan, M. Vinoba, S.K. Jeong, A.N. Grace, Hydrothermal growth of CuS nanostructures and its photocatalytic properties. Powder Technol. 252, 25–32 (2014)

    Article  Google Scholar 

  4. P.K. Bajpai, S. Yadav, A. Tiwari, H.S. Virk, Recent advances in the synthesis and characterization of chalcogenide nanoparticles. Solid State Phenom. 222, 187–233 (2014)

    Article  Google Scholar 

  5. H.M. Zidan, M. Abu-Elnader, Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Phys. B Condens. Matter 355(1–4), 308–317 (2005)

    Article  Google Scholar 

  6. F.H. Mahasin, H.A. Wafaa, Optical properties of crystal violet doped PMMA films. Trade Sci. Res. Rev. Polym. 4(2), 45–51 (2013)

    Google Scholar 

  7. F. D’Amore, M. Lanata, S.M. Pietralunga, M.C. Gallazzi, G. Zerbi, Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule. Opt. Mater. (Amst) 24(4), 661–665 (2004)

    Article  Google Scholar 

  8. V. Švorčík, O. Lyutakov, I. Huttel, Thickness dependence of refractive index and optical gap of PMMA layers prepared under electrical field. J. Mater. Sci. Mater. Electron. 19(4), 363–367 (2008)

    Article  Google Scholar 

  9. J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno, Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches. J. Lightwave Technol. 16(6), 1024–1029 (1998)

    Article  Google Scholar 

  10. T. Rajkumar, P. Sivasamy, B. Sreedhar, C.T. Vijayakumar, Chlorinated thermal stabilizer for optically clear PMMA. Polym. Adv. Technol. 23(5), 829–834 (2012)

    Article  Google Scholar 

  11. D.S. Kelkar, A.P. Gadre, Structural and optical properties of iodine-doped PMMA film. J. Appl. Polym. Sci. 70, 1627–1631 (1998)

    Article  Google Scholar 

  12. J. Jin, R. Qi, Y. Su, M. Tong, J. Zhu, Preparation of high-refractive-index PMMA/TiO2 nanocomposites by one-step in situ solvothermal method. Iran Polym. J. 22(10), 767–774 (2013)

    Article  Google Scholar 

  13. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. Mater. Electron. 26, 5303–5309 (2015)

    Article  Google Scholar 

  14. D.M. Fernandes, J.L. Andrade, M.K. Lima, M.F. Silva, L.H.C. Andrade, S.M. Lima, A.A.W. Hechenleitner, E.A.G. Pineda, Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni 0.04 Zn 0.96 O and PVA/Fe 0.03 Zn 0.97 O nanocomposite films. Polym. Degrad. Stab. 98(9), 1862–1868 (2013)

    Article  Google Scholar 

  15. J. Kundu, D. Pradhan, Influence of precursor concentration, surfactant and temperature on the hydrothermal synthesis of CuS: structural, thermal and optical properties. New J. Chem. 37(5), 1470 (2013)

    Article  Google Scholar 

  16. N. Ananth, S. Umapathy, J. Sophia, T. Mathavan, D. Mangalaraj, On the optical and thermal properties of in situ/ex situ reduced Ag NP’s/PVA composites and its role as a simple SPR-based protein sensor. Appl. Nanosci. 1(2), 87–96 (2011)

    Article  Google Scholar 

  17. M. Ghanipour, D. Dorranian, Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J. Nanomater. (2013). doi:10.1155/2013/897043

    Google Scholar 

  18. M.N. Siddiqui, H.H. Redhwi, E. Vakalopoulou, I. Tsagkalias, M.D. Ioannidou, D.S. Achilias, Synthesis, characterization and reaction kinetics of PMMA/silver nanocomposites prepared via in situ radical polymerization. Eur. Polym. J. 72, 256–269 (2015)

    Article  Google Scholar 

  19. E.M. Abdelrazek, A.M. Hezma, A. El-khodary, A.M. Elzayat, Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt. J Basic Appl. Sci. (2015). doi:10.1016/j.ejbas.2015.06.001

    Google Scholar 

  20. M. Saranya, R. Ramachandran, E.J.J. Samuel, S.K. Jeong, A.N. Grace, Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst. Powder Technol. 279, 209–220 (2015)

    Article  Google Scholar 

  21. Y. Li, J. Scott, Y.T. Chen, L. Guo, M. Zhao, X. Wang, W. Lu, Direct dry-grinding synthesis of monodisperse lipophilic CuS nanoparticles. Mater. Chem. Phys. 162, 671–676 (2015)

    Article  Google Scholar 

  22. M.C. Altay, E.Y. Malikov, G.M. Eyvazova, M.B. Muradov, O.H. Akperov, R. Puskás, D. Madarász, Z. Kónya, Á. Kukovecz, Facile synthesis of CuS nanoparticles deposited on polymer nanocomposite foam and their effects on microstructural and optical properties. Eur. Polym. J. 68, 47–56 (2015)

    Article  Google Scholar 

  23. V. Aravindan, C. Lakshmi, P. Vickraman, Investigations on Na+ ion conducting polyvinylidenefluoride-co-hexafluoro-propylene/poly ethylmethacrylate blend polymer electrolytes. Curr. Appl. Phys. 9, 1106–1111 (2009)

    Article  Google Scholar 

  24. J.A.N. Al-hosiny, Characterization of optical, thermal and electrical properties of SWCNTs/PMMA nanocomposite films. Iran. Polym. J. 23, 437–443 (2014)

    Article  Google Scholar 

  25. S.B. Aziz, Z.H.Z. Abidin, M.F.Z. Kadir, Innovative method to avoid the reduction of silver ions to silver nanoparticles (Ag+ → Ago) in silver ion conducting based polymer electrolytes. Phys. Scr. 90, 035808 (2015)

    Article  Google Scholar 

  26. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane. Express Polym. Lett. 4, 300–310 (2010)

    Article  Google Scholar 

  27. S.B. Aziz, Z.H.Z. Abidin, A.K. Arof, Effect of silver nanoparticles on the DC conductivity in chitosan-silver triflate polymer electrolyte. Phys. B 405, 4429–4433 (2010)

    Article  Google Scholar 

  28. Y. Li, W. Lu, Q. Huang, M. Huang, C. Li, W. Chen, Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine (Lond.) 5(8), 1161–1171 (2010)

    Article  Google Scholar 

  29. K.R. Rajesh, C.S. Menon, Estimation of the refractive index and dielectric constants of magnesium phthalocyanine thin films from its optical studies. Mater. Lett. 53, 329–332 (2002)

    Article  Google Scholar 

  30. F. Yakuphanoglu, G. Barım, I. Erol, The effect of FeCl3 on the optical constants and optical band gap of MBZMA-co-MMA polymer thin films. Phys. B 391, 136–140 (2007)

    Article  Google Scholar 

  31. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21, 18623–18629 (2011)

    Article  Google Scholar 

  32. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J. Mater. Sci. Mater. Electron. 26, 8022–8028 (2015)

    Article  Google Scholar 

  33. J. Jin, R. Qi, Y. Su, M. Tong, J. Zhu, Preparation of high-refractive-index PMMA/TiO2 nanocomposites by one-step in situ solvothermal method. Iran. Polym. J. 22, 767–774 (2013)

    Article  Google Scholar 

  34. Y.Q. Rao, S. Chen, Molecular composites comprising TiO2 and their optical properties. Macromolecules 41, 4838–4844 (2008)

    Article  Google Scholar 

  35. F.F. Muhammad, K. Sulaiman, Utilizing a simple and reliable method to investigate the optical functions of small molecular organic films—Alq3 and Gaq3 as examples. Meas. J. Int. Meas. Confed. 44(8), 1468–1474 (2011)

    Article  Google Scholar 

  36. J. Tauc, Amorphous and Liquid Semiconductors, 1st edn. (Plenum Publishing Company Ltd, London, 1974)

    Book  Google Scholar 

  37. S. Prasher, M. Kumar, S. Singh, Electrical and optical properties of O 6+ ion beam-irradiated polymers. Int. J. Polym. Anal. Charact. 19(3), 204–211 (2014)

    Article  Google Scholar 

  38. X. Rocquefelte, S. Jobic, M.-H. Whangbo, Concept of optical channel as a guide for tuning the optical properties of insulating materials. Solid State Sci. 9(7), 600–603 (2007)

    Article  Google Scholar 

  39. M.F.H. Al-kadhemy, A.A.M. Saeed, F.J. Kadhum, S.A. Mazloum, H.K. Aied, The effect of (He–Ne) laser irradiation on the optical properties of methyl orange doped PVA films. J. Radiat. Res. Appl. Sci. 7(3), 371–375 (2014)

    Article  Google Scholar 

  40. Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, C. Burda, Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. J. Am. Chem. Soc. 131(12), 4253–4261 (2009)

    Article  Google Scholar 

  41. F. Yakuphanoglu, M. Sekerci, O.F. Ozturk, The determination of the optical constants of Cu (II) compound having 1-chloro-2,3-o-cyclohexylidinepropane thin film. Opt. Commun. 239, 275–280 (2004)

    Article  Google Scholar 

  42. S.B. Aziz, Modifying poly(vinyl alcohol) (PVA) from insulator to smallbandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater. doi:10.1007/s11664-015-4191-9

  43. A. Bollero, M. Grossberg, B. Asenjo, M.T. Gutiérrez, CuS-based thin films for architectural glazing applications produced by co-evaporation: morphology, optical and electrical properties. Surf. Coat. Technol. 204(5), 593–600 (2009)

    Article  Google Scholar 

  44. V. Rajendran, J. Gajendiran, Nonionic surfactant poly (ethane 1,2-diol)-400 assisted solvothermal synthesis of copper monosulfide (CuS) nanoplates and their structural, topographical, optical and luminescent properties. Mater. Sci. Semicond. Process. 36, 92–95 (2015)

    Article  Google Scholar 

  45. Q. Li, Ch. Liu, Q. Gong, J. Gao, L. Qi, Free-carrier absorption and optical limiting in the suspensions of CuS and Cu2O hollow spheres. J. Nanopart. Res. 11, 989–993 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Ministry of Higher Education and Scientific Research-Kurdistan Regional Government-Iraq, University of Sulaimani, Faculty of Science and Science Education, School of Science-Department of Physics for this scientific research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujahadeen B. Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, S.B., Abdulwahid, R.T., Rsaul, H.A. et al. In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J Mater Sci: Mater Electron 27, 4163–4171 (2016). https://doi.org/10.1007/s10854-016-4278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4278-y

Keywords

Navigation