Skip to main content
Log in

Microstructure and dielectric properties of (K0.5Na0.5)NbO3–Bi(Zn2/3Nb1/3)O3 − xmol%CeO2 lead-free ceramics for high temperature capacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(K0.5Na0.5)NbO3–Bi(Zn2/3Nb1/3)O3 − xmol%CeO2 [0.97KNN–0.03BZN − xCeO2] lead-free ceramics were synthesized and the phase structure, microstructure and dielectric properties were investigated. Dielectric studies reveal that the 0.97KNN–0.03BZN − 1.0CeO2 ceramics show excellent dielectric properties at a broad usage temperature range (150–350 °C): the dielectric permittivity is near 1900 (at 10 kHz) with the capacitance variation (ΔC/C150 °C) no more than ±10 %; the temperature coefficient of permittivity (TCε) is as low as −162 ppm/°C; the corresponding dielectric loss is less than 2.5 %. These results indicate that the 0.97KNN–0.03BZN − 1.0CeO2 ceramics are promising candidates for high temperature multilayer ceramic capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Kishi, Y. Mizuno, H. Chazono, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1–15 (2003)

    Article  Google Scholar 

  2. R.W. Johnson, The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packag. Manuf. 27, 164–176 (2004)

    Article  Google Scholar 

  3. P. Hagler, P. Henson, R.W. Johnson, Packaging technology for electronic applications in harsh high-temperature environments. IEEE Trans. Ind. Electron. 58, 2673–2682 (2011)

    Article  Google Scholar 

  4. C. Buttay, D. Planson, B. Allard, State of the art of high temperature power electronics. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 176, 283–288 (2011)

    Article  Google Scholar 

  5. S.J. Zhang, R. Xia, C.A. Randall, T.R. Shrout, R.R. Duan, R.F. Speyer, Dielectric and piezoelectric properties of niobium-modified BiInO3–PbTiO3 perovskite ceramics with high Curie temperatures. J. Mater. Res. 20, 2067–2070 (2005)

    Article  Google Scholar 

  6. S.M. Choi, C.J. Stringer, T.R. Shrout, C.A. Randall, Structure and property investigation of a Bi-based perovskite solid solution: (1−x)Bi(Ni1/2Ti1/2)O3–(x)PbTiO3. J. Appl. Phys. 98, 34108 (2005)

    Article  Google Scholar 

  7. J. Ryu, S. Priya, K. Uchino, High-Tm relaxor ferroelectrics: 0.3BiScO3–0.6PbTiO3–0.1Pb(Mn1/3Nb2/3)O3. Appl. Phys. Lett. 82, 251–253 (2003)

    Article  Google Scholar 

  8. C.J. Stringer, N.J. Donnelly, T.R. Shrout, Dielectric characteristics of perovskite-structured high-temperature relaxor ferroelectrics: the BiScO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary system. J. Am. Ceram. Soc. 91, 1781–1787 (2008)

    Article  Google Scholar 

  9. Y. Li, K. Moon, C.P. Wong, Electronics without lead. Science 308, 1419 (2005)

    Article  Google Scholar 

  10. W.W. Wolny, European approach to development of new environmentally sustainable electroceramics. Ceram. Int. 30, 1079–1081 (2004)

    Article  Google Scholar 

  11. C.C. Kruea-In, G. Rujijanagul, F.Y. Zhu, Relaxor behaviour of K0.5Bi0.5TiO3-BiScO3 ceramics. Appl. Phys. Lett. 100, 202904 (2012)

  12. C. Zhou, X. Liu, W. Li, C. Yuan, G. Chen, Structure and electrical properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–BiCoO3 lead-free piezoelectric ceramics. J. Mater. Sci. 44, 3833–3840 (2009)

    Article  Google Scholar 

  13. Y. Yuan, C.J. Zhao, X.H. Zhou, High-temperature stable dielectrics in Mn-modified (1−x)Bi0.5Na0.5TiO3xCaTiO3 ceramics. J. Electroceram. 25, 212–217 (2010)

    Article  Google Scholar 

  14. R. Dittmer, J. Wook, D. Damjanovic, Lead-free high-temperature dielectrics with wide operational range. J. Appl. Phys. 109, 034107 (2011)

    Article  Google Scholar 

  15. R. Dittmer, E.M. Anton, J. Wook, A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3. J. Am. Ceram. Soc. 95, 3519–3524 (2012)

    Article  Google Scholar 

  16. A. Zeb, S.J. Milne, Stability of high temperature dielectric properties for (1−x)Ba0.8Ca0.2TiO3xBi(Mg0.5Ti0.5)O3 ceramics. J. Am. Ceram. Soc. 96, 2887 (2013)

    Article  Google Scholar 

  17. W.F. Bai, J.G. Hao, B. Shen, Dielectric properties and relaxor behavior of high Curie temperature (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3–Bi(Mg0.5Ti0.5)O3 lead-free ceramics. Ceram. Int. 39, s19–s23 (2012)

    Article  Google Scholar 

  18. N. Raengthon, D.P. Cann, High-K (Ba0.8Bi0.2)(Zn0.1Ti0.9)O3 ceramics for high temperature capacitor applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1954–1958 (2011)

    Article  Google Scholar 

  19. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92, 1719–1724 (2009)

    Article  Google Scholar 

  20. J.B. Lim, S.J. Zhang, N. Kim, High-temperature dielectrics in the BiScO3–BaTiO3–(K1/2Bi1/2)TiO3 ternary system. J. Am. Ceram. Soc. 92, 679–682 (2009)

    Article  Google Scholar 

  21. J.B. Lim, S. Zhang, T.R. Shrout, High temperature capacitors using a BiScO3–BaTiO3–(K1/2Bi1/2)TiO3 ternary system. Electron. Mater. Lett. 7, 71–75 (2011)

    Article  Google Scholar 

  22. N. Raengthon, T. Sebastian, D. Cumming, BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 95, 3554–3561 (2012)

    Article  Google Scholar 

  23. C.C. Huang, D.P. Cann, Phase transitions and ferroelectric properties in BiScO3–Bi(Zn1/2Ti1/2)O3–BaTiO3 solid solutions. J. Appl. Phys. 102, 044103 (2007)

    Article  Google Scholar 

  24. N. Raengthon, D.P. Cann, High temperature electronic properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–BiInO3 for capacitor applications. J. Electroceram. 28, 167–171 (2012)

    Article  Google Scholar 

  25. H.L. Du, W.C. Zhou, F. Luo, Phase structure, dielectric properties, and relaxor behavior of (K0.5Na0.5)NbO3–(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications. J. Appl. Phys. 105, 124104 (2009)

    Article  Google Scholar 

  26. H.L. Du, W.C. Zhou, F. Luo, High Tm lead-free relaxor ferroelectrics with broad temperature usage range: 0.04BiScO3–0.96(K0.5Na0.5)NbO3. J. Appl. Phys. 104, 044104 (2008)

    Article  Google Scholar 

  27. H.L. Du, W.C. Zhou, F. Luo, Design and electrical properties’ investigation of (K0.5Na0.5)NbO3–BiMeO3 lead-free piezoelectric ceramics. J. Appl. Phys. 104, 034104 (2008)

    Article  Google Scholar 

  28. J.B. Zhao, H.L. Du, S.B. Qu, The effects of Bi(Mg2/3Nb1/3)O3 on piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J. Alloys Compd. 509, 3537–3540 (2011)

    Article  Google Scholar 

  29. F. Zhu, T.A. Skidmore, A.J. Bell, T.P. Comyn, C.W. James, M. Ward, Diffuse dielectric behaviour in Na0.5K0.5NbO3–LiTaO3–BiScO3 lead-free ceramics. J. Mater. Chem. Phys. 129, 411–417 (2011)

    Article  Google Scholar 

  30. H.L. Cheng, H.L. Du, W.C. Zhou, Bi(Zn2/3Nb1/3)O3–(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range. J. Am. Ceram. Soc. 96, 833–837 (2013)

    Article  Google Scholar 

  31. D. Jin, P. Hing, C.Q. Sun, Growth dynamics and electric properties of PbTi0.1Zr0.9O3 ceramics doped with cerium oxide. J. Phys. D Appl. Phys. 33, 744–752 (2000)

    Article  Google Scholar 

  32. B. Sahoo, P.K. Panda, Effect of CeO2 on dielectric, ferroelectric and piezoelectric properties of PMN-PT (67/33) compositons. J. Mater. Sci. 42, 4745–4752 (2007)

    Article  Google Scholar 

  33. C. Ju, D.Y. Xu, S.H. Xie, Effect of CeO2 doping on properties of PCrNi-4 piezoelectric ceramics. J. Inorg. Organomet. Polym. 22, 32–36 (2012)

    Article  Google Scholar 

  34. Y. Yuan, E.Z. Li, B. Tang, B. Li, X.H. Zhou, Effects of ZnO and CeO additions on the microstructure and dielectric properties of Mn-modified (Bi0.5Na0.5)0.88Ca0.12TiO3 ceramics. J. Mater. Sci. Mater. Electron. 23, 309–314 (2012)

    Article  Google Scholar 

  35. Y.W. Liao, D.Q. Xiao, D.M. Lin, The effects of CeO2-doping on piezoelectric and dielectric properties of Bi0.5(Na1−xy K x Li y )0.5TiO3 piezoelectric ceramics. Mater. Sci. Eng. B 133, 172–176 (2006)

    Article  Google Scholar 

  36. D.J. Gao, K.W. Kwok, D.M. Lin, Microstructure, electrical properties of CeO2-doped (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 44, 2466–2470 (2009)

    Article  Google Scholar 

  37. T. Lee, K.W. Kwok, H.L. Chan, Preparation and piezoelectric properties of CeO2-added (Na0.475K0.475Li0.05) (Nb0.92Ta0.05Sb0.03)O3 lead-free ceramics. J. Phys. D Appl. Phys. 41, 155402 (2008)

    Article  Google Scholar 

  38. J.H. Hwang, Y.H. Han, Electrical properties of cerium-doped BaTiO3. J. Am. Ceram. Soc. 84, 1750–1754 (2001)

    Article  Google Scholar 

  39. J.H. Wang, Y.H. Han, Dielectric properties of (Ba1−xCex)TiO3. Jpn. J. Appl. Phys. 39, 701–704 (2000)

    Google Scholar 

  40. Y. Guo, K. Kakimoto, H. Ohsato, Ferroelectric-relaxor behvior of (Na0.5K0.5)NbO3-based ceramics. J. Phys. Chem. Sol. 65, 1831–1835 (2004)

    Article  Google Scholar 

  41. H. Qian, L.A. Bursill, Random-field potts model for the polar domains of lead magnesium niobate and lead scandium tantalite. Int. J. Mod. Phys. B 10, 2007 (1996)

    Article  Google Scholar 

  42. C.J. Stringer, T.R. Shout, C.A. Randall, Structure-property-performance relationships of new high temperature relaxors for capacitor applications, Ph. D. Thesis, The Pennsylvania State University, Ann Arbor, 2006

  43. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectr. Lett. Sect. 44, 55–61 (1982)

    Article  Google Scholar 

  44. V.V. Shvartsman, D.C. Lupascu, Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012)

    Article  Google Scholar 

  45. Shannon RD, Acta Crystallogr. A 32,751 (1976)

  46. W. Chen, X. Yao, X.Y. Wei, Tunability and ferroelectric relaxor properties of bismuth strontium titanate ceramics. Appl. Phys. Lett. 90, 182902 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51072165), the fund of State Key Laboratory of Solidification Processing in NWPU (No. KP200901), Doctor Start fund of Baoji University of arts. & sci. (ZK15044), and the fund of Shaanxi Key Laboratory of Phytochemistry (13JS006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hualei Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Zhou, W., Du, H. et al. Microstructure and dielectric properties of (K0.5Na0.5)NbO3–Bi(Zn2/3Nb1/3)O3 − xmol%CeO2 lead-free ceramics for high temperature capacitor applications. J Mater Sci: Mater Electron 26, 9097–9106 (2015). https://doi.org/10.1007/s10854-015-3597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3597-8

Keywords

Navigation