Skip to main content

Advertisement

Log in

Electric-field induced nonlinear optical materials based on a bipolar copper (I) complex embedded in polymer matrices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Second order nonlinear optical properties of Cu(dppb)(pz2Bph2), where dppb = 1,2-bis(diphenylphosphino)benzene and pz2Bph2 = diphenyl-bis(pyrazol-1-yl)borate were investigated. In particular, optical second harmonic was generated with different polymer films containing dc-electric field aligned chromophore molecules. It was shown that in such dc-electric field aligned polymer films, the enhancement of the second order output efficiency may be up to 3 times higher with as compared to the non-aligned poly(methylmethacrylate) (PMMA). After switching off the external dc-electric field the second order susceptibility decreases within 5–7 min by about 40 % with respect to the photoinduced ones. After that time, the second harmonic generation efficiency remains constant for much more than a few hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Tokmakovs, M. Rutkis, K. Traskovskis, E. Zarins, L. Laipniece, V. Kokars, V. Kampars, IOP Conf. Ser.: Mater. Sci. Eng. 38, 012034 (2012)

    Article  Google Scholar 

  2. N. Ananthi, U. Balakrishnan, K.B. Manjunath, S. Velmathi, G. Umesh, Opt. Photonics J. 2, 40–45 (2012)

    Article  Google Scholar 

  3. C. Coluccini, G. Terraneo, D. Pasini. J. Chem. vol. 2015, Article ID 827592 (2015)

  4. Y. Yang, H. Wang, F. Liu, D. Yang, S. Bo, L. Qiu, Z. Zhen, X. Liu, Phys. Chem. Chem. Phys. 17, 5776–5784 (2015)

    Article  Google Scholar 

  5. M.Y. Song, M.S. Kim, J.Y. Lee, Bull. Korean Chem. Soc. 33(2), 695 (2012)

    Article  Google Scholar 

  6. I.V. Kityk, M. Makowska-Janusik, E. Gondek, L. Krzeminska, A. Danel, K.J. Plucinski, S. Benet, B. Sahraoui, J. Phys.: Condens. Matter. 16(3), 231–239 (2004)

    Google Scholar 

  7. A. Migalska-Zalas, Z. Sofiani, B. Sahraoui, I.V. Kityk, V. Yuvshenko, J.-L. Fillaut, J. Perruchon, T.J.J. Muller, J. Phys. Chem. B 108, 14942–14947 (2004)

    Article  Google Scholar 

  8. N. Armaroli, Chem. Soc. Rev. 30, 113–124 (2001)

    Article  Google Scholar 

  9. A. Lavie-Cambot, M. Cantuel, Y. Leydet, G. Jonusauskas, D.M. Bassani, N.D. McClenaghan, Coord. Chem. Rev. 252, 2572–2584 (2008)

    Article  Google Scholar 

  10. R. Czerwieniec, K. Kowalski, H. Yersin, Dalton Trans. 42, 9826–9830 (2013)

    Article  Google Scholar 

  11. R. Czerwieniec, H. Yersin, Inorg. Chem. 54, 4322–4327 (2015)

    Article  Google Scholar 

  12. B.J. Coe, M.C. Chamberlain, J.P. Essex-Lopresti, S. Gaines, J.C. Jeffery, S. Houbrechts, A. Persoons, Inorg. Chem. 36, 3284–3292 (1997)

    Article  Google Scholar 

  13. S. Igawa, M. Hashimoto, I. Kawata, M. Yashima, M. Hoshino, M. Osawa, J. Mater. Chem. C 1, 542–551 (2013)

    Article  Google Scholar 

  14. H. Yersin, U. Monkowius, R. Czerwieniec, J. Yu, Patents WO002010031485A1, DE102008336A1, 2008

  15. I.V. Kityk, R.I. Mervinskii, J. Kasperczyk, S. Jossi, Mater. Lett. 27(4–5), 233–237 (1996)

    Article  Google Scholar 

  16. R.I. Mervinskii, I.V. Kityk, M. Makowska-Janusik, J. Straube, M. Matusiewicz & J. Kasperczyk. Opt. Mater. 6(3), 239–244 (1996)

  17. M.J. Cho, D.H. Choi, P.A. Sullivan, A.J.P. Akelaitis, L.R. Dalton, Prog. Polym. Sci. 33, 1013 (2008)

    Article  Google Scholar 

  18. L.R. Dalton, P.A. Sullican, H.B. Denise, Chem. Rev. 110, 25 (2010)

    Article  Google Scholar 

  19. Wu Wenbo, Jingui Qin, Zhen Li, Polymer 54, 4351–4382 (2013)

    Article  Google Scholar 

  20. I. Fuks-Janczarek, I.V. Kityk, R. Miedzinski, E. Gondek, J. Ebothe, I. Nzoghe-Mendome, A. Danel, J. Mater. Sci.: Mater. Electron. 18, 519–526 (2007)

    Google Scholar 

  21. I. Fuks-Janczarek, R. Miedzinski, E. Gondek, P. Szlachcic, I.V. Kityk, J. Mater. Sci.: Mater. Electron. 19, 434–441 (2008)

    Google Scholar 

  22. W. Gruhn, Optica applicata. Opt. Appl. 42, 467–472 (2012)

    Google Scholar 

  23. I.V. Kityk, J. Kasperczyk, B. Sahraoui, M.F. Yasinskii, B. Holan, Polymers 38(N19), 4803–4806 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The project was financially supported by King Saud University, Vice Deanship of research chairs. R. Czerwieniec and H. Yersin gratefully acknowledge the German Ministry of Education and Research (BMBF) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kityk.

Ethics declarations

Conflict of interest

No conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czerwieniec, R., El-Naggar, A.M., Albassam, A.A. et al. Electric-field induced nonlinear optical materials based on a bipolar copper (I) complex embedded in polymer matrices. J Mater Sci: Mater Electron 26, 8394–8397 (2015). https://doi.org/10.1007/s10854-015-3506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3506-1

Keywords

Navigation