Skip to main content
Log in

Rational design of SnO2 aggregation nanostructure with uniform pores and its supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin dioxide (SnO2) aggregation nanostructures with uniform pores were synthesized through a gas–liquid interfacial reaction driven by solvothermal means. The aggregated particle sizes of this structure can be rationally controlled via adjusting the volume ratios of ethylene glycol and distilled water. Investigation reveals that the more the water was in the mixed solvent the bigger the particles formed in the same reaction time duration, but with the porous distribution unchanged, which may be attributed to the coordination between F and Sn4+ to orderly adjust the hydrolysis rate of Sn4+. This architecture exhibits excellent cycling stability as an electrode for supercapacitors (97 % capacity retention over 1000 cycles at 1 A g−1 after the first 80 cycles decay).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie, L. Zheng, Angew. Chem. 121, 9344–9347 (2009)

    Article  Google Scholar 

  2. C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Jiang, J. Am. Chem. Soc. 132, 46–47 (2009)

    Article  Google Scholar 

  3. Z. Wang, D. Luan, F.Y.C. Boey, X.W. Lou, J. Am. Chem. Soc. 133, 4738–4741 (2011)

    Article  Google Scholar 

  4. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453, 638–641 (2008)

    Article  Google Scholar 

  5. X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Science 331, 746–750 (2011)

    Article  Google Scholar 

  6. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947–1949 (2001)

    Article  Google Scholar 

  7. X. Xu, J. Zhuang, X. Wang, J. Am. Chem. Soc. 130, 12527–12535 (2008)

    Article  Google Scholar 

  8. H. Zhang, C. Hu, Catal. Commun. 14, 32–36 (2011)

    Article  Google Scholar 

  9. J. Long, W. Xue, X. Xie, Q. Gu, Y. Zhou, Y. Chi, W. Chen, Z. Ding, X. Wang, Catal. Commun. 16, 215–219 (2011)

    Article  Google Scholar 

  10. P. Sun, X. Mei, Y. Cai, J. Ma, Y. Sun, X. Liang, F. Liu, G. Lu, Sens. Actuators B Chem. 187, 301–307 (2013)

    Article  Google Scholar 

  11. F. Gyger, M. Hubner, C. Feldmann, N. Barsan, U. Weimar, Chem. Mater. 22, 4821–4827 (2010)

    Article  Google Scholar 

  12. S. Cao, W. Zeng, H. Zhang, Y. Li, Mater. Electron. 26(5), 2871–2878 (2015)

    Article  Google Scholar 

  13. Y. Shen, X. Cao, B. Zhang, D. Wei, J. Ma, W. Liu, C. Han, Y. Shen, J. Alloys Compd. 593, 271–274 (2014)

    Article  Google Scholar 

  14. M. Choudhary, V.N. Mishra, R. Dwivedi, Mater. Electron. 24(8), 2824–2832 (2013)

    Article  Google Scholar 

  15. H.J. Snaith, C. Ducati, Nano Lett. 10, 1259–1265 (2010)

    Article  Google Scholar 

  16. M.A. Hossain, J.R. Jennings, Z.Y. Koh, Q. Wang, ACS Nano 5, 3172–3181 (2011)

    Article  Google Scholar 

  17. K. Kravchyk, L. Protesescu, M.I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin, M.V. Kovalenko, J. Am. Chem. Soc. 135, 4199–4202 (2013)

    Article  Google Scholar 

  18. S. Ding, J.S. Chen, Adv. Funct. Mater. 21, 4120–4125 (2011)

    Article  Google Scholar 

  19. G. Wu, Z. Li, W. Wu, M. Wu, J. Alloys Compd. 615, 582–587 (2014)

    Article  Google Scholar 

  20. Y. Wang, X. Jiang, Y. Xia, J. Am. Chem. Soc. 125, 16176–16177 (2003)

    Article  Google Scholar 

  21. D.F. Zhang, L.D. Sun, J.L. Yin, C.H. Yan, Adv. Mater. 15, 1022–1025 (2003)

    Article  Google Scholar 

  22. Y. Wang, H.C. Zeng, J.Y. Lee, Adv. Mater. 18, 645–649 (2006)

    Article  Google Scholar 

  23. Z. Zhuang, F. Huang, Z. Lin, H. Zhang, J. Am. Chem. Soc. 134, 16228–16234 (2012)

    Article  Google Scholar 

  24. Z. Zhuang, J. Zhang, F. Huang, Y. Wang, Z. Lin, Phys. Chem. Chem. Phys. 11, 8516–8521 (2009)

    Article  Google Scholar 

  25. E.J. Lee, C. Ribeiro, E. Longo, E.R. Leite, Chem. Phys. 328, 229–235 (2006)

    Article  Google Scholar 

  26. C. Ribeiro, E.J. Lee, E. Longo, E.R. Leite, ChemPhysChem 6, 690–696 (2005)

    Article  Google Scholar 

  27. R.L. Penn, J.F. Banfield, Science 281, 969–971 (1998)

    Article  Google Scholar 

  28. D. Li, M.H. Nielsen, J.R. Lee, C. Frandsen, J.F. Banfield, J.J. De Yoreo, Science 336, 1014–1018 (2012)

    Article  Google Scholar 

  29. R.K. Selvan, I. Perelshtein, N. Perkas, A. Gedanken, J. Phys. Chem. C 112, 1825–1830 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ph.D. Scientific Research Fund of Liaocheng University (No. 318051406), the 973 Project of China (No. 2011CB935901), and the National Natural Science Fund of China (No. 91022033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denghu Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Xu, Z., Liang, J. et al. Rational design of SnO2 aggregation nanostructure with uniform pores and its supercapacitor application. J Mater Sci: Mater Electron 26, 6143–6147 (2015). https://doi.org/10.1007/s10854-015-3194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3194-x

Keywords

Navigation