Skip to main content
Log in

A bright future for color-controlled solid state lighting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The development of luminescent phosphors for controlled color in solid state lighting (SSL) applications, based on light-emitting diode (LED) technology, has been an actively growing research area over the last two decades. In this short review, we outline the role that materials science developments have had on the advancement of white SSL technologies. In particular, we discuss the potential for using semiconducting quantum dot phosphors for precise color tuning in efficient white light LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. N. Bardsley, S. Bland, L. Pattison, M. Pattison, K. Stober, F. Welsh, M. Yamada, Solid-state lighting research and development multi-year program plan. Tech. Rep., US Department of Energy, Washington (2014)

  2. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci. Mater. Electron 17, 87 (2006)

    Article  Google Scholar 

  3. A.A. Setlur, ECS Interface 18, 32 (2009)

    Google Scholar 

  4. Class for Physics of the Royal Swedish Academy of Sciences, Scientific background on the nobel prize in physics 2014: efficient blue light-emitting diodes leading to bright and energy-saving white light sources. Tech. Rep., Royal Swedish Academy of Sciences, Stockholm (2014)

  5. J.A. Veitch, L.A. Whitehead, M. Mossman, T.D. Pilditch, Color Res. Appl. 39, 263 (2014)

    Article  Google Scholar 

  6. M.S. Shur, A. Žukauskas, Proc. IEEE 93, 1691 (2005)

    Article  Google Scholar 

  7. M. Royer, R. Tuttle, S. Rosenfeld, N. Miller, Color maintenance of LEDs in laboratory and field applications. Tech. rep., US Department of Energy, Washington (2013)

  8. V. Wood, V. Bulović, Nano Rev. 1, 5202 (2010)

    Article  Google Scholar 

  9. R. Chen, D.J. Lockwood, J. Electrochem. Soc. 149, S69 (2002)

    Article  Google Scholar 

  10. D. Poelman, J.E. Van Haecke, P.F. Smet, J. Mater. Sci. Mater. Electron 20, 134 (2009)

    Article  Google Scholar 

  11. Z. Wu, J. Shi, J. Wang, M. Gong, Q. Su, J. Mater. Sci. Mater. Electron 19, 339 (2008)

    Article  Google Scholar 

  12. H. He, R. Fu, X. Zhang, X. Song, X. Zhao, Z. Pan, J. Mater. Sci. Mater. Electron 20, 433 (2009)

    Article  Google Scholar 

  13. P. Pust, V. Weiler, C. Hecht, A. Tücks, A.S. Wochnik, A.K. Henss, D. Wiechert, C. Scheu, P.J. Schmidt, W. Schnick, Nat. Mater. 13, 891

  14. V. Mahalingam, J. Thirumalai, R. Krishnan, R. Chandramohan, J. Mater. Sci. Mater. Electron 26, 842 (2015)

    Article  Google Scholar 

  15. H. Xie, F. Li, H. Xi, R. Tian, X. Wang, J. Mater. Sci. Mater. Electron 26, 23 (2015)

    Article  Google Scholar 

  16. Z. Zhang, C. Han, W. Shi, Y. Kang, Y. Wang, W. Zhang, D. Wang, J. Mater. Sci. Mater. Electron 26, 1923 (2015)

    Article  Google Scholar 

  17. A.J. Peter, I.B.S. Banu, J. Mater. Sci. Mater. Electron 26, 2045 (2015)

    Article  Google Scholar 

  18. L. Meng, L. Liang, Y. Wen, J. Mater. Sci. Mater. Electron 25, 2676 (2014)

    Article  Google Scholar 

  19. J.M. Luther, J.M. Pietryga, ACS Nano 7, 1845 (2013)

    Article  Google Scholar 

  20. D.A. Hines, P.V. Kamant, ACS Appl. Mater. Interfaces 6, 3041 (2014)

    Article  Google Scholar 

  21. O. Schalm, V. Van der Linden, P. Frederickx, S. Luyten, G. Van der Snickt, J. Caen, D. Schryvers, K. Janssens, E. Cornelis, D. Van Dyck, M. Schreiner, Spectrochim. Acta B 64, 812 (2009)

    Article  Google Scholar 

  22. D.J. Barber, I.C. Freestone, Archaeom. 32, 33 (1990)

    Article  Google Scholar 

  23. A.I. Ekimov, A.A. Onushchenko, JETP Lett. 34, 345 (1980)

    Google Scholar 

  24. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  Google Scholar 

  25. R. Rossetti, J.L. Ellison, J.M. Gibson, L.E. Brus, J. Chem. Phys. 80, 4464 (1984)

    Article  Google Scholar 

  26. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993)

    Article  Google Scholar 

  27. V.K. La Mer, Ind. Eng. Chem. 44, 1270 (1952)

    Article  Google Scholar 

  28. N.H. Fletcher, J. Chem. Phys. 29, 572 (1958)

    Article  Google Scholar 

  29. X. Peng, J. Wickham, A.P. Alivisatos, J. Am. Chem. Soc. 120, 5343 (1998)

    Article  Google Scholar 

  30. R. Viswanatha, D.D. Sarma, Growth of Nanocrystals in Solution (Wiley, New York, 2007)

    Book  Google Scholar 

  31. X. Peng, J. Thessing, in Semiconductor Nanocrystals and Silicate Nanoparticles, vol. 118, ed. by X. Peng, D. Mingos (Springer, Berlin, Heidelberg, 2005), pp. 79–119

  32. Z.A. Peng, X. Peng, J. Am. Chem. Soc. 123, 183 (2001)

    Article  Google Scholar 

  33. J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng, J. Am. Chem. Soc. 125, 12567 (2003)

    Article  Google Scholar 

  34. W.W. Yu, X. Peng, Angew. Chem. Int. Ed. 41, 2368 (2002)

    Article  Google Scholar 

  35. L. Qu, Z.A. Peng, X. Peng, Nano Lett. 1, 333 (2001)

    Article  Google Scholar 

  36. W. Nan, Y. Niu, H. Qin, F. Cui, Y. Yang, R. Lai, W. Lin, X. Peng, J. Am. Chem. Soc. 134, 19685 (2012)

    Article  Google Scholar 

  37. K.H. Lee, J.H. Lee, H.D. Kang, C.Y. Han, S.M. Bae, Y. Lee, J.Y. Hwang, H. Yang, J. Alloys Compd. 610, 511 (2014)

    Article  Google Scholar 

  38. A. Saha, K.V. Chellappan, K.S. Narayan, J. Ghatak, R. Datta, R. Viswanatha, J. Phys. Chem. Lett. 4, 3544 (2013)

    Article  Google Scholar 

  39. K. Boldt, N. Kirkwood, G.A. Beane, P. Mulvaney, Chem. Mater. 25, 4731 (2013)

    Article  Google Scholar 

  40. M.J. Anc, N.L. Pickett, N.C. Gresty, J.A. Harris, K.C. Mishra, ECS J. Solid State Sci. Technol. 2, R3071 (2013)

    Article  Google Scholar 

  41. M.A. Malik, P. O’Brien, N. Revaprasadu, Adv. Mater. 11, 1441 (1999)

    Article  Google Scholar 

  42. C. Czekelius, M. Hilgendorff, L. Spanhel, I. Bedja, M. Lerch, G. Müller, U. Bloeck, D.S. Su, M. Giersig, Adv. Mater. 11, 643 (1999)

    Article  Google Scholar 

  43. V. Gurin, Colloids Surf. A 142, 35 (1998)

    Article  Google Scholar 

  44. T. Omata, K. Nose, S. Otsuka-Yao-Matsuo, J. Appl. Phys. 105, 073106 (2009)

    Article  Google Scholar 

  45. H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, Y. Li, Chem. Mater. 20, 6434 (2008)

    Article  Google Scholar 

  46. Y. Hamanaka, T. Kuzuya, T. Sofue, T. Kino, K. Ito, K. Sumiyama, Chem. Phys. Lett. 466, 176 (2008)

    Article  Google Scholar 

  47. D.E. Nam, W.S. Song, H. Yang, J. Colloid Interface Sci. 361, 491 (2011)

    Article  Google Scholar 

  48. L. De Trizio, M. Prato, A. Genovese, A. Casu, M. Povia, R. Simonutti, M.J.P. Alcocer, C. D’Andrea, F. Tassone, L. Manna, Chem. Mater. 24, 2400 (2012)

    Article  Google Scholar 

  49. J. Park, S.W. Kim, J. Mater. Chem. 21, 3745 (2011)

    Article  Google Scholar 

  50. J. Zhang, R. Xie, W. Yang, Chem. Mater. 23, 3357 (2011)

    Article  Google Scholar 

  51. B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, B. Zou, Adv. Funct. Mater. 22, 2081 (2012)

    Article  Google Scholar 

  52. W. Zhang, Q. Lou, W. Ji, J. Zhao, X. Zhong, Chem. Mater. 26, 1204 (2014)

    Article  Google Scholar 

  53. S.C. Allen, A.J. Steckl, Appl. Phys. Lett. 92, 143309 (2008)

    Article  Google Scholar 

  54. J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Adv. Mater. 12, 1102 (2000)

    Article  Google Scholar 

  55. C. Yoon, H.G. Hong, H.C. Kim, D. Hwang, D.C. Lee, C.K. Kim, Y.J. Kim, K. Lee, Colloids Surf. A 428, 86 (2013)

    Article  Google Scholar 

  56. W.S. Song, H. Yang, Chem. Mater. 24, 1961 (2012)

    Article  Google Scholar 

  57. B. Chen, Q. Zhou, J. Li, F. Zhang, R. Liu, H. Zhong, B. Zou, Opt. Express 21, 10105 (2013)

    Article  Google Scholar 

  58. A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, R. Mahiou, A.C.S. Appl, Mater. Interfaces 6, 252 (2014)

    Article  Google Scholar 

  59. Z. Zhang, D. Liu, D. Li, K. Huang, Y. Zhang, Z. Shi, R. Xie, M.-Y. Han, Y. Wang, W. Yang, Chem. Mater. 27, 1405 (2015)

    Article  Google Scholar 

  60. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, Y. Kim, Adv. Mater. 22, 3076 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We thank collaborators V. Venkataramanan, H. Kumar, N. Dyck, and R. Li at Lumentra, Inc. for helpful discussions.

Conflict of interest

K. M. Poduska received research funds from Lumentra, Inc. (Toronto, Canada) through a Collaborative Research and Development Grant from the Natural Science and Engineering Resource Council of Canada (Grant Number CRDPJ 417799 - 11) that funded C. Xu’s post-doctoral work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin M. Poduska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Poduska, K.M. A bright future for color-controlled solid state lighting. J Mater Sci: Mater Electron 26, 4565–4570 (2015). https://doi.org/10.1007/s10854-015-3086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3086-0

Keywords

Navigation