Skip to main content
Log in

Significant change in micro mechanical, structural and electrical properties of MgB2 superconducting ceramics depending on argon ambient pressure and annealing duration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the effects of different Ar pressure (vacuum, 0, 10 and 20 bar) and different annealing times (0.5 and 1 h) on microstructural, mechanical and superconducting properties of the bulk superconducting MgB2 are investigated. The samples are produced using the solid state reaction method. X-ray diffraction and scanning electron microscopy measurements are performed for phase formation, crystal structure, lattice parameters, particle size analysis, grain orientations, grain connectivity, and surface morphology of MgB2 samples. The superconducting properties are studied by dc resistivity measurements. In this study we have focused on microhardness measurements to investigate the mechanical properties. Vickers microhardness test is employed for determination of mechanical properties of the samples. The experimental microhardness results are analyzed by Meyer’s law, proportional sample resistance model, elastic–plastic deformation model, Hays Kendall (HK) approach, and indentation induced cracking (IIC) model. HK approach is identified as the most appropriate model for MgB2 superconducting samples exhibiting the indentation size effect behavior; for the other samples that have reverse indentation size effect behavior IIC model is appointed as the most appropriate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Sangwal, Mater. Chem. Phys. 63, 145 (2000)

    Article  Google Scholar 

  2. J. Gong, H. Miao, Z. Zhao, Z. Guan, load-dependence of the measured hardness of Ti (C, N)-based cermets. Mater. Sci. Eng. A 303, 179 (2001)

    Article  Google Scholar 

  3. B. Basu, N. Mukhopadhyay, K. Manisha, J. Eur. Ceram. Soc. 29, 801 (2009)

    Article  Google Scholar 

  4. O. Şahin, O. Uzun, U. Kölemen, N. Uçar, J. Phys. Condens. Matter 19, 306001 (2007)

    Article  Google Scholar 

  5. K. Sangwall, B. Surowska, P. Blaziak, Mater. Chem. Phys. 77, 511 (2002)

    Article  Google Scholar 

  6. D.D. Graaf, M. Braciszewicz, H.T. Hintzen, M. Sopicka-Lizer, G. De With, J. Mater. Sci. 39, 2145 (2004)

    Article  Google Scholar 

  7. R.K. Marwaha, B.S. Shah, Cryst. Res. Technol. 23, 63–65 (1988)

    Article  Google Scholar 

  8. R. Bajpai, S.C. Datt, Indian J. Pure Appl. Phys. 24, 254 (1986)

    Google Scholar 

  9. G. Constantinidis, R.D. Tomlinson, H. Neumann, Mag. Lett. 57, 91 (1988)

    Article  Google Scholar 

  10. C. Ascheron, C. Haase, G. Kuhn, H. Neumann, Cryst. Res. Technol. 24, 33–35 (1989)

    Article  Google Scholar 

  11. J. Schmidt, W. Schnelle, Y. Grin, R. Kniep, Solid State Sci. 5, 535–539 (2003)

    Article  Google Scholar 

  12. U. Kölemen, J. Alloys Compd. 425, 429–435 (2006)

    Article  Google Scholar 

  13. T. Prikhna, W. Gawalek, Y. Savchuk, N. Sergienko, V. Moshchil, S. Dub, V. Sverdun, L. Kovalev, V. Penkin, M. Zeisberger, M. Wendt, G. Fuchs, T. Habisreuther, D. Litzkendorf, P. Nagorny, V. Melnikov, Phys. C. 595, 460–462 (2007)

  14. M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci. Mater. Electron. 24, 352–361 (2013)

    Article  Google Scholar 

  15. L. Arda, O. Ozturk, E. Asikuzun, S. Ataoglu, Powder Technol. 235, 479–484 (2013)

    Article  Google Scholar 

  16. M. Tosun, S. Ataoglu, L. Arda, O. Ozturk, E. Asikuzun, D. Akcan, O. Cakiroglu, Mater. Sci. Eng. A 590, 416–422 (2014)

    Article  Google Scholar 

  17. E. Asikuzun, O. Ozturk, H.A. Cetinkara, G. Yildirim, A. Varilci, M. Yılmazlar, C. Terzioglu, J. Mater. Sci. Mater. Electron. 23, 1001–1010 (2012)

    Article  Google Scholar 

  18. B. Ozkurt, J. Supercond. Nov. Magn. 27, 2407–2414 (2014)

    Article  Google Scholar 

  19. H. Koralay, A. Arslan, S. Cavdar, O. Ozturk, E. Asikuzun, A. Gunen, A.T. Tasci, J. Mater. Sci. Mater. Electron. 24, 4270–4278 (2013)

    Article  Google Scholar 

  20. H. Aydın, A. Babanli, S.P. Altintas, E. Asikuzun, N. Soylu, O. Ozturk, M. Dogruer, C. Terzioglu, G. Yildirim, J. Mater. Sci. Mater. Electron. 24, 4566–4573 (2013)

    Article  Google Scholar 

  21. D. Tabor, J. Inst. Metals 79, 1–18 (1951)

    Google Scholar 

  22. O. Sahin, O. Uzun, U. Kolemen, B. Duzgun, N. Ucar, Chin. Phys. Lett. 22, 3137–3140 (2005)

    Article  Google Scholar 

  23. J.B. Quinn, G.D. Quinn, J. Mater. Scı. 32, 4331–4346 (1997)

    Article  Google Scholar 

  24. M. L. Tarkanian, J.P. Neumann and L. Raymond, M. L. Tarkanian, J.P. Neumann, L. Raymond, in The Science of Hardness Testing and Its Research Application, ed. by J.H. Westbrook and H. Conrad (American Society for Metals, Metal Park, OH, 1973), pp. 187–198

  25. C. Hays, E.G. Kendall, Metallography 6, 275–282 (1973)

    Article  Google Scholar 

  26. N. Gane, F.P. Bowden, J. Appl. Phys. 39, 1432–1435 (1968)

    Article  Google Scholar 

  27. R. Awad, A.I. Abou-Aly, M. Kamal, M. Anas, J. Supercond. Nov. Magn. 24, 1947–1956 (2011)

    Article  Google Scholar 

  28. H. Li, R.C. Bradt, J. Mat. Sci. 31, 1065–1070 (1996)

    Article  Google Scholar 

  29. P. Feltham, R. Banerjee, J. Mat. Sci. 27, 1626–1632 (1992)

    Article  Google Scholar 

  30. D.U. Gubser, A.W. Webb, Phys. Rev. Lett. 35, 104–107 (1975)

    Article  Google Scholar 

  31. L.D. Jennings, C.A. Swenson, Phys. Rev. 112, 31–43 (1958)

    Article  Google Scholar 

  32. J. Wittig, Z. Phys. 195, 27–215 (1966)

    Google Scholar 

  33. M.A. Il’ina, E.S. Itskevich, Zh. Eksp. Teor. Fiz. 61, 2357–2361 (1971)

  34. T. Vogt, G. Schneider, J.A. Hriljac, G. Yang, J.S. Abell, Phys. Rev. B 63, 2205 (2001)

    Article  Google Scholar 

  35. P. Bordet, M. Mezouar, M. Nunez-Regueiro, M. Monteverde, M.D. Nunez-Regueiro, N. Rogado, K.A. Regan, M.A. Hayward, T. He, S.M. Loureiro, R.J. Cava, Phys. Rev. B 64, 2502 (2001)

    Article  Google Scholar 

  36. J.E. Hirch, F. Marsiglio, Phys. Rev. B 64, 144523 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KUBAP-03/2012-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ozturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, O., Asikuzun, E. & Kaya, S. Significant change in micro mechanical, structural and electrical properties of MgB2 superconducting ceramics depending on argon ambient pressure and annealing duration. J Mater Sci: Mater Electron 26, 3840–3852 (2015). https://doi.org/10.1007/s10854-015-2910-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2910-x

Keywords

Navigation