Skip to main content
Log in

Composites of Te nanorods and TeO2 nanoparticles: chemical synthesis in an alkaline condition, characterization and photovoltaic measurements

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Composites of Te nanorods and TeO2 nanoparticles have been successfully synthesized via a reduction chemical method in an alkaline condition. In this method, TeCl4 and N2H4·H2O used as starting materials were heated at 70 °C for 10 min in the presence of NaOH solution. To study the effect of NaOH on the formation mechanism of the products, the experiment marked as blank test was carried out without using NaOH solution. X-ray powder diffraction (XRD) analysis of the product obtained from the blank test showed that Te nanorods could be only formed by using TeCl4 and N2H4·H2O in the absence of NaOH at the same conditions. In addition, the effect of NaOH concentration on the morphology and chemical composition of the composites was investigated. Based on the XRD results, it was found that the production of the TeO2 nanoparticles increased by increasing the concentration of NaOH solution. Besides, the electron microscopy images of the products indicated that the lengths of the Te nanorods increased by increasing the concentration of NaOH solution. The final products have been characterized by XRD, SEM and TEM. We have also studied the photocurrent density–voltage (JV) curve of the as-synthesized composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. C. Mao, X. Wu, H. Pan, J. Zhu, H. Chen, Nanotechnology 16, 2892 (2005)

    Article  Google Scholar 

  2. F. Liang, H. Qian, Mater. Chem. Phys. 113, 523 (2009)

    Article  Google Scholar 

  3. A.M. Morales, C.M. Lieber, Science 279, 208 (1998)

    Article  Google Scholar 

  4. J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Science 293, 1455 (2001)

    Article  Google Scholar 

  5. T.H. Hwang, D.S. Jung, J.-S. Kim, B.G. Kim, J.W. Choi, Nano Lett. 13, 4532 (2013)

    Article  Google Scholar 

  6. M. Mousavi-Kamazani, M. Salavati-Niasari, Compos. Part B Eng. 56, 490 (2014)

    Article  Google Scholar 

  7. X. Fu, G. Ban, D. Li, H. Chen, Z. Peng, Adv. Condens. Matter Phys. 2014, 6 (2014)

    Google Scholar 

  8. A. Arbaoui, A. Outzourhit, N. Achargui, H. Bellakhder, E.L. Ameziane, J.C. Bernede, Sol. Energy Mater. Sol. Cells 90, 1364 (2006)

    Article  Google Scholar 

  9. J. Pautrat, J. Phys. III 4, 2413 (1994)

    Google Scholar 

  10. D. Tsiulyanu, S. Marian, V. Miron, H.-D. Liess, Sens. Actuators B Chem. 73, 35 (2001)

    Article  Google Scholar 

  11. M. Abdel-Aziz, Appl. Surf. Sci. 253, 2059 (2006)

    Article  Google Scholar 

  12. G.S. Cao, C.W. Dong, L. Wang, Z.S. Liu, Mater. Lett. 63, 1778 (2009)

    Article  Google Scholar 

  13. H. Zhu, H. Zhang, J. Liang, G. Rao, J. Li, G. Liu, Z. Du, H. Fan, J. Luo, J. Phys. Chem. C 115, 6375 (2011)

    Article  Google Scholar 

  14. U.K. Gautam, C. Rao, J. Mater. Chem. 14, 2530 (2004)

    Article  Google Scholar 

  15. B. Geng, Y. Lin, X. Peng, G. Meng, L. Zhang, Nanotechnology 14, 983 (2003)

    Article  Google Scholar 

  16. P. Mohanty, T. Kang, B. Kim, J. Park, J. Phys. Chem. B 110, 791 (2006)

    Article  Google Scholar 

  17. C.J. Hawley, B.R. Beatty, G. Chen, J.E. Spanier, Cryst. Growth Des. 12, 2789 (2012)

    Article  Google Scholar 

  18. R.A.H. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data (CRC Press, Boca Raton, 2001)

    Book  Google Scholar 

  19. L. Weng, S.N.B. Hodgson, Opt. Mater. 19, 313 (2002)

    Article  Google Scholar 

  20. S.S. Kim, J.Y. Park, S.-W. Choi, H.G. Na, J.C. Yang, D.S. Kwak, H.J. Nam, C.K. Hwangbo, H.W. Kim, Appl. Surf. Sci. 258, 501 (2011)

    Article  Google Scholar 

  21. H.-Y. Wei, J. Lin, W.-H. Huang, Z.-B. Feng, D.-W. Li, Mater. Sci. Eng., B 164, 51 (2009)

    Article  Google Scholar 

  22. E. Filippo, T. Siciliano, A. Genga, G. Micocci, M. Siciliano, M. Tepore, Appl. Surf. Sci. 265, 329 (2013)

    Article  Google Scholar 

  23. Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Jpn. J. Appl. Phys. 47, 771 (2008)

    Article  Google Scholar 

  24. B. Qin, Y. Bai, Y. Zhou, J. Liu, X. Xie, W. Zheng, Mater. Lett. 63, 1949 (2009)

    Article  Google Scholar 

  25. M. Yousefi, M. Sabet, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, J. Clust. Sci. 23, 491 (2012)

    Article  Google Scholar 

  26. R. Jenkins, R.L. Snyder, Chemical Analysis: Introduction to X-ray Powder Diffractometry, vol. 138 (Wiley, New York, 1996), pp. 89–91

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to council of University of Kashan for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panahi-Kalamuei, M., Mohandes, F. & Salavati-Niasari, M. Composites of Te nanorods and TeO2 nanoparticles: chemical synthesis in an alkaline condition, characterization and photovoltaic measurements. J Mater Sci: Mater Electron 26, 3781–3786 (2015). https://doi.org/10.1007/s10854-015-2902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2902-x

Keywords

Navigation