Skip to main content
Log in

MnS thin films prepared by a simple and novel nebulizer technique: report on the structural, optical, and dispersion energy parameters

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work describes different properties of manganese sulfide (MnS) thin films deposited on glass substrate at 300 °C by a simple and novel nebulized spray technique. The annealing temperature induced enhancement in polycrystalline nature of films was observed from the X-ray diffraction study. The maximum optical transmittance of 98 % was observed for the as-deposited thin film. The observed transmittance threshold shift towards higher wavelength region (red shift), indicated a systematic reduction in optical band gap (E g ; 3.95–3.33 eV) of the films with increasing annealing temperature. The increase in Urbach energy with annealing temperature is due to the presence of localized states, which is consistent with the E g data. The optical constants, dielectric parameters, porosity, dispersion energy parameters, relaxation time, and optical non-linear susceptibility of the films were also evaluated from the optical transmittance data. These results are discussed and correlated well in the light of possible mechanisms underlying the phenomena. The Raman spectra show two peaks at 355 and 637 cm−1 which correspond to the vibrations of Mn–S bonds. The strong band edge emission observed in the PL spectra indicates the high optical quality of deposited MnS thin films. The paramagnetic behavior of the film was confirmed from the MH plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R. Tappero, P. Wolfers, A. Lichanot, Electronic, magnetic structures and neutron diffraction in B1 and B2 phases of MnS: a density functional approach. Chem. Phys. Lett. 335, 449–457 (2001)

    Article  Google Scholar 

  2. M. Kobayashi, T. Nakai, S. Mochizuki, N. Takayama, Validity of the Sugano–Tanabe diagram for band states in MnO and MnS under high pressure. J. Phys. Chem. Solids 56, 341–344 (1995)

    Article  Google Scholar 

  3. R.L. Clendenen, H.G. Drickamer, Lattice parameters of nine oxides and sulfides as a function of pressure. J. Chem. Phys. 44, 4223–4228 (1966)

    Article  Google Scholar 

  4. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th edn. (Wiley, New York, 1988), pp. 699, 701–711

  5. A. Yilmaz, Characterization of MnS films deposited by the spray pyrolysis. Phys. Scr. 83, 045603–045607 (2011)

    Article  Google Scholar 

  6. S.A. Mayen-Hernandez, S.J. Sandoval, R.C.G.T. Delgado, B.S. Chao, O.J. Sandoval, Preparation and characterization of polycrystalline MnS thin films by the RF-sputtering technique above room temperature. J. Cryst. Growth 256, 12–19 (2003)

    Article  Google Scholar 

  7. I. Oidor-Juarez, P. Jimenez, G.T. Delgado, R.C. Perez, O.J. Sandoval, B. Chao, S.J. Sandoval, Mater. Res. Bull. 37, 1749–1754 (2002)

    Article  Google Scholar 

  8. H.M. Pathan, S.S. Kale, C.D. Lokhande, Preparation and characterization of amorphous manganese sulfide thin films by SILAR method. Mater. Res. Bull. 42, 1565–1569 (2007)

    Article  Google Scholar 

  9. Y.C. Zhang, H. Wang, B. Wang, H. Yan, M. Yoshimura, Low-temperature hydrothermal synthesis of pure metastable γ-manganese sulfide (MnS) crystallites. J. Cryst. Growth 243, 214–217 (2002)

    Article  Google Scholar 

  10. Y.C. Zhang, H. Wang, B. Wang, H. Xu, H. Yan, M. Yoshimura, Hydrothermal synthesis of metastable γ-manganese sulfide crystallites. Opt. Mater. 23, 433–437 (2003)

    Article  Google Scholar 

  11. C. Gumus, C. Ulutas, R. Esen, O.M. Ozkendir, Y. Ufuktepe, Preparation and characterization of crystalline MnS thin films by chemical bath deposition. Thin Solid Films 492, 1–5 (2005)

    Article  Google Scholar 

  12. L. David, C. Bradford, X. Tang, T.C.M. Graham, K.A. Prior, B.C. Cavenett, Growth of zinc blende MnS and MnS heterostructures by MBE using ZnS as a sulfur source. J. Cryst. Growth 251, 591–595 (2003)

    Article  Google Scholar 

  13. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Company Inc, Boston, 1978), p. 284

    Google Scholar 

  14. G.B. Williamson, R.C. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Philos. Mag. 1, 34–45 (1956)

    Article  Google Scholar 

  15. R. Tamrakar, M. Ramrakhiani, B.P. Chandra, Effect of capping agent concentration on photophysical properties of zinc sulfide nanocrystals. Open Nanosci. J. 2, 12–16 (2008)

    Article  Google Scholar 

  16. Y. Ji-Beom, L.F. Alan, R.H. Bube, Transport mechanisms in ZnO/CdS/CuInS2 solar cells. J. Appl. Phys. 68, 4694–4699 (1990)

    Article  Google Scholar 

  17. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627–637 (1966)

    Article  Google Scholar 

  18. Y. Shi, F. Xue, C. Li, Q. Zhao, Z. Qu, Preparation and hydrothermal annealing of pure metastable β-Mns thin films by chemical bath deposition (CBD). Mater. Res. Bull. 46, 483–486 (2011)

    Article  Google Scholar 

  19. C.D. Lokhande, K.M. Gadave, Chemical deposition of MnS thin films from thiosulphate bath. Turk. J. Phys. 18, 83–87 (1994)

    Google Scholar 

  20. F.Y. Al-Shaikley, Electrical and optical properties dependence on annealing temperature for CdS thin films. Indian J. Appl. Res. 3, 544–548 (2013)

    Article  Google Scholar 

  21. J.I. Shadia, N.A. Riyad, An investigation of the bandgap and Urbach tail of spray-deposited SnO2: F thin films. Phys. Scr. 84, 055801–055807 (2011)

    Article  Google Scholar 

  22. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  23. J. Singh, Optical Properties of Condensed Matter and Applications (Wiley, London, 2006)

    Book  Google Scholar 

  24. P.J.L. Herve, L.K.J. Vandamme, Empirical temperature dependence of the refractive index of semiconductors. J. Appl. Phys. 77, 5476–5477 (1995)

    Article  Google Scholar 

  25. P. Sudhagar, R. Sathyamoorthy, S. Chandramohan, Influence of porous morphology on optical dispersion properties of template free mesoporous titanium dioxide (TiO2) films. Appl. Surf. Sci. 254, 1919–1928 (2008)

    Article  Google Scholar 

  26. http://en.wikipedia.org/wiki/Alabandite

  27. J.S.Q. Zeng, R. Greif, P. Stevens, M. Ayers, A. Hunt, Effective optical constants n and k and extinction coefficient of silica aerogel. J. Mater. Res. 11, 687–693 (1996)

    Article  Google Scholar 

  28. E. Marquez, A.M. Bernal-Oliva, J.M. Gonzalez-Leal, R. Prieto-Alcon, A. Ledesma, R. Jimenez-Garay, I. Martil, Optical-constant calculation of non-uniform thickness thin films of the Ge10As15Se75 chalcogenide glassy alloy in the sub-band-gap region (0.1–1.8 eV). Mater. Chem. Phys. 60, 231–239 (1999)

    Article  Google Scholar 

  29. J.I. Pankove, Optical Processes in Semiconductors (Dover Publications Inc, New York, 1975), p. 91

    Google Scholar 

  30. F. Yakuphanoglu, A. Cukurovali, I. Yilmaz, Refractive index and optical absorption properties of the complexes of a cyclobutane containing thiazolyl hydrazone ligand. Opt. Mater. 27, 1363–1368 (2005)

    Article  Google Scholar 

  31. M.M. El-Nahass, H.S. Soliman, A.A. Hendi, Sh El-Gamdy, Effect of annealing on the structural and optical properties of tertracyanoquinodimethane thin films. Aust. J. Basic Appl. Sci. 5, 145–156 (2011)

    Google Scholar 

  32. J.I. Pankove, Optical Processes in Semiconductors (Dover publication Institute, New York, 1971)

    Google Scholar 

  33. T.S. Moss, G.J. Burrell, E. Ellis, Semiconductor Opto-Electronics (Butterworths, London, 1973)

    Google Scholar 

  34. A.K. Walton, T.S. Moss, Determination of refractive index and correction to effective electron mass in PbTe and PbSe. Proc. Phys. Soc. 81, 509–513 (1963)

    Article  Google Scholar 

  35. T.S. Moss, Optical Properties of Semiconductors (Butterworths Scientific Publications, London, 1959)

    Google Scholar 

  36. S.H. Wemple, M. Di Domenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971)

    Article  Google Scholar 

  37. S.H. Wample, Material dispersion in optical fibers. Appl. Opt. 18, 31–35 (1979)

    Article  Google Scholar 

  38. M. Caglar, S. Ilican, Y. Calgan, Y. Sahin, F. Yakuphanoglu, D. Hur, A spectroelectrochemical study on single-oscillator model and optical constants of sulfonated polyaniline film. Spectrochim. Acta Part A 71, 621–627 (2008)

    Article  Google Scholar 

  39. T. Wagner, M. Krbal, T. Kohoutek, V. Peina, M. Vlek, M. Frumar, Kinetics of optically- and thermally-induced diffusion and dissolution of silver in spin-coated As33S67 amorphous films; their properties and structure. J. Non-Cryst. Solids 32, 233–237 (2003)

    Article  Google Scholar 

  40. P. Nandakumar, C. Vijayan, M. Rajalakshmi, K.A. Akhilesh, Y.V.G.S. Murti, Raman spectra of CdS nanocrystals in Nafion: longitudinal optical and confined acoustic phonon modes. Physica E 11, 377–383 (2001)

    Article  Google Scholar 

  41. D. Chen, H. Quan, X. Luo, S. Luo, 3-D graphene cross-linked with mesoporous MnS clusters with high lithium storage capability. Scr. Mater. 76, 1–4 (2014)

    Article  Google Scholar 

  42. F.J. Brieler, P. Grundmann, M. Froba, L. Chen, P.J. Klar, W. Heimbrodt, H.K.V. Nidda, T. Kurz, A. Loidl, Formation of Zn1−x MnxS nanowires within mesoporous silica of different pore size. J. Am. Chem. Soc. 126, 797–807 (2004)

    Article  Google Scholar 

  43. J. Tao, J. Liu, J. He, K. Zhang, J. Jiang, L. Sun, P. Yanga, J. Chuab, Synthesis and characterization of Cu2ZnSnS4 thin films by the sulfurization of co-electrodeposited Cu–Zn–Sn–S precursor layers for solar cell applications. RSC Adv. 4, 23977–23988 (2014)

    Article  Google Scholar 

  44. Y. Zhang, Z. Zhang, S. Wang, X. Ma, Y. Qian, Synthesis and characterization of α-MnS polyhedrons and spheres. Mater. Chem. Phys. 97, 365–370 (2006)

    Article  Google Scholar 

  45. F. Du, Z.F. Huang, C.Z. Wang, X. Meng, G. Chen, Spin-glass like behavior in rhombohedral Li(Mn, Cr)O2. J. Appl. Phys. 102, 113906-1–113906-3 (2007)

    Google Scholar 

  46. M. Elango, K. Gopalakrishnan, S. Vairam, M. Thamilselvan, Structural, optical and magnetic studies on non-aqueous synthesized CdS:Mn nanomaterials. J. Alloys Compd. 538, 48–55 (2012)

    Article  Google Scholar 

  47. C.I. Pearce, R.A.D. Pattrick, D.J. Vaughan, Electrical and magnetic properties of sulfides. Rev. Mineral. Geochem. 61, 127–180 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (R. Sivakumar), gratefully acknowledges the University Grants Commission (UGC), New Delhi, Government of India for the financial support under Major Research Project (Ref.: F.No.42-818/2013(SR), dt.22.03.2013) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girish, M., Dhandayuthapani, T., Sivakumar, R. et al. MnS thin films prepared by a simple and novel nebulizer technique: report on the structural, optical, and dispersion energy parameters. J Mater Sci: Mater Electron 26, 3670–3684 (2015). https://doi.org/10.1007/s10854-015-2885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2885-7

Keywords

Navigation