Skip to main content
Log in

Enhanced ionic conductivity of Sm0.2Ce0.8O2−δ electrolyte for solid oxide fuel cells through doping transition metals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ceria-based electrolytes are considered as candidate electrolyte materials for intermediate temperature solid oxide fuel cells due to the high oxygen-ion conductivity. Lowing sintering temperature for ceria-based electrolyte is favorable for co-firing process as well as the reduction of fabrication cost. Transition metals (Fe, Co, Ni) were added to Sm-doped ceria (SDC) and the crystal structure, sintering performance and ionic conductivity were investigated by X-ray diffraction, SEM and AC impedance spectroscopy. The transition metal elements added to SDC as sintering aids reduced the sintering temperature of SDC electrolyte by 100–150 °C and the grain size decreased with increased doping amount of transition metals. The ionic conductivity, especially the grain-boundary conductivity was significantly improved by a small addition of transition metals. Among Fe, Co, Ni doped SDC electrolytes, the 0.01 mol Fe3+ doped SDC sintered at 1350 °C exhibited the highest ionic conductivity about 0.063 S cm−1 at 800 °C and the lowest activation energy of 0.73 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Ding, M.F. Liu, Z.B. Liu, X.X. Li, K. Blinn, X.B. Zhu, M.L. Liu, Adv. Energy Mater. 3, 1149–1154 (2013)

    Article  Google Scholar 

  2. Z. Shao, W. Zhou, Z. Zhu, Prog. Mater. Sci. 57, 804–874 (2012)

    Article  Google Scholar 

  3. M.L. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y. Choi, Mater. Today 14, 534–546 (2011)

    Article  Google Scholar 

  4. J.G. Lee, J.H. Park, Y.G. Shul, Nat. Commun. 5, 4045 (2014)

    Google Scholar 

  5. J. An, Y.B. Kim, J. Park, T.M. Gur, F.B. Prinz, Nano Lett. 13, 4551–4555 (2013)

    Article  Google Scholar 

  6. K.C. Anjaneya, G.P. Nayaka, J. Manjanna, G. Govindaraj, K.N. Ganesha, J. Alloys Compd. 578, 53–59 (2013)

    Article  Google Scholar 

  7. N. Singh, N.K. Singh, D. Kumar, O. Parkash, J. Alloys Compd. 519, 129–135 (2012)

    Article  Google Scholar 

  8. O. Parkash, N. Singh, N.K. Singh, D. Kumar, Solid State Ion. 212, 100–105 (2012)

    Article  Google Scholar 

  9. Y.C. Dong, S. Hampshire, J.E. Zhou, X.F. Dong, B. Lin, G.Y. Meng, J. Eur. Ceram. Soc. 31, 2365–2376 (2011)

    Article  Google Scholar 

  10. R.V. Mangalaraja, S. Ananthakumar, A. Schachtsiek, M. Lopez, C.P. Camurri, R.E. Avila, Mater. Sci. Eng., A 527, 3645–3650 (2010)

    Article  Google Scholar 

  11. S. Kuharuangrong, J. Power Sources 171, 506–510 (2007)

    Article  Google Scholar 

  12. S. Dikmen, H. Aslanbay, E. Dikmen, O. Şahin, J. Power Sources 195, 2488–2495 (2010)

    Article  Google Scholar 

  13. D. Pérez-Coll, D. Marrero-López, P. Núñez, S. Piñol, J.R. Frade, Electrochim. Acta 51, 6463–6469 (2006)

    Article  Google Scholar 

  14. S. Zha, C. Xia, G. Meng, J. Power Sources 115, 44–48 (2003)

    Article  Google Scholar 

  15. R. Peng, C. Xia, Q. Fu, G. Meng, D. Peng, Mater. Lett. 56, 1043–1047 (2002)

    Article  Google Scholar 

  16. C. Kleinlogel, L.J. Gauckler, Solid State Ion. 135, 567–573 (2000)

    Article  Google Scholar 

  17. H. Gao, J. Liu, H. Chen, S. Li, T. He, Y. Ji, J. Zhang, Solid State Ion. 179, 1620–1624 (2008)

    Article  Google Scholar 

  18. T.S. Zhang, J. Ma, L.B. Kong, S.H. Chan, P. Hing, J.A. Kilner, Solid State Ion. 167, 203–207 (2004)

    Article  Google Scholar 

  19. G.S. Lewis, A. Atkinson, B.C.H. Steele, J. Drennan, Solid State Ion. 152–153, 567–573 (2002)

    Article  Google Scholar 

  20. Y.Z. Wu, C. Su, W. Wang, H.T. Wang, Z.P. Shao, Int. J. Hydrog. Energy 37, 9287–9297 (2012)

    Article  Google Scholar 

  21. D. Xu, X. Liu, S. Xu, D. Yan, L. Pei, C. Zhu, D. Wang, W. Su, Solid State Ion. 192, 510–514 (2011)

    Article  Google Scholar 

  22. P.-L. Chen, I.W. Chen, J. Am. Ceram. Soc. 79, 1793–1800 (1996)

    Article  Google Scholar 

  23. Y.F. Zheng, M. Zhou, L. Ge, S.J. Li, H. Chen, L.C. Guo, J. Alloys Compd. 509, 546–550 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports provided by Natural Science Foundation of Jiangsu Province (No. BK2012806), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Key Laboratory of Jiangsu Higher Education Institutions and the Fundamental Research Funds for the Central Universities (No. 30920130111022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifeng Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, G., Ding, X., Zhu, W. et al. Enhanced ionic conductivity of Sm0.2Ce0.8O2−δ electrolyte for solid oxide fuel cells through doping transition metals. J Mater Sci: Mater Electron 26, 3664–3669 (2015). https://doi.org/10.1007/s10854-015-2884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2884-8

Keywords

Navigation