Skip to main content
Log in

Cadmium sulfide interface layer for improving the performance of titanium dioxide/poly (3-hexylthiophene) solar cells by extending the spectral response

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work focused on studying the effect of cadmium sulfide (CdS) interfacial layer on the performance of titanium dioxide (TiO2)/poly (3-hexylthiophene) (P3HT) solar cells and finding out its effect on charge recombination dynamics of hybrid TiO2/P3HT solar cells. FESEM images confirm the uniform distribution of chemical bath deposited CdS layer on TiO2 nanoparticles. Insertion of CdS layer at the nanocrystalline TiO2/P3HT interface broadens quantum efficiency spectrum of the solar cells with peak values over 80 and 40 % at the wavelengths of maximum absorption of CdS and P3HT respectively and hence enhances short-circuit current density (JSC) from 3.5 to 5.9 mAcm−2 under simulated illumination (70 mWcm−2) with an AM 1.5 filter. CdS layer further improves open circuit voltage (VOC) from 0.35 to 0.57 V, which is consistent with higher built-in voltage in CdS/P3HT than in TiO2/P3HT due to relatively lower laying conduction band edge of CdS. Photovoltaic transient measurements show that the carrier life-time in TiO2/CdS/P3HT solar cell is an order of magnitude longer than that in TiO2/P3HT solar cell. Optimized TiO2/P3HT solar cells with CdS interlayer yield power conversion efficiencies over 1.5 %, which is three times greater than that for similar solar cells without CdS layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.M. Peiro, P. Ravirajan, K. Govender, D.S. Boyle, P. O’Brien, D.D.C. Bradley, J. Nelson, J.R. Durrant, J. Mater. Chem. 16, 2088 (2006)

    Article  Google Scholar 

  2. H.J. Snaith, C. Ducati, Nano Lett. 10, 1259 (2010)

    Article  Google Scholar 

  3. P. Ravirajan, S.A. Haque, D. Poplavskyy, J.R. Durrant, D.D.C. Bradley, J. Nelson, Optical Science and Technology, SPIE’s 48th Annual Meeting, International Society for Optics and Photonics, pp 226–236 (2004)

  4. P. Ravirajan, A.M. Peiro, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, J. Phys. Chem. B 110, 7635 (2006)

    Article  Google Scholar 

  5. G.K. Mor, S. Kim, M. Paulose, O.K. Varghese, K. Shankar, J. Basham, C.A. Grimes, Nano Lett. 9, 4250 (2009)

    Article  Google Scholar 

  6. R. Zhu, C.Y. Jiang, B. Liu, S. Ramakrishna, Adv. Mater. 21, 994 (2009)

    Article  Google Scholar 

  7. J. Boucle, P. Ravirajan, J. Nelson, J. Mater. Chem. 17, 3141 (2007)

    Article  Google Scholar 

  8. P. Ravirajan, S.A. Haque, J.R. Durrant, D. Poplavskyy, D.D.C. Bradley, J. Nelson, J. Appl. Phys. 95, 1473 (2004)

    Article  Google Scholar 

  9. L. Dou, J. You, J. Yang, C.C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Nat. Photonics 6, 180 (2012)

    Article  Google Scholar 

  10. V. Shrotriya, E.H.E. Wu, G. Li, Y. Yao, Y. Yang, Appl. Phys. Lett. 88, 064104 (2006)

    Article  Google Scholar 

  11. F. Wu, Q. Cui, Z. Qiu, C. Liu, H. Zhang, W. Shen, M. Wang, ACS Appl. Mater. Interfaces 5, 3246 (2013)

    Article  Google Scholar 

  12. A. Braga, S. Gimenez, I. Concina, A. Vomiero, I.M. Mora-Sero, J. Phys. Chem. Lett. 2, 454 (2011)

    Article  Google Scholar 

  13. V.G. Pedro, C. Sima, G. Marzari, P.P. Boix, S. Gimenez, Q. Shen, T. Dittrich, I. Mora-Sero, Phys. Chem. Chem. Phys. 15, 13835 (2013)

    Article  Google Scholar 

  14. C. Li, L. Yang, J. Xiao, Y.C. Wu, M. Sondergaard, Y. Luo, D. Li, Q. Meng, B.B. Iversen, Phys. Chem. Chem. Phys. 15, 8710 (2013)

    Article  Google Scholar 

  15. J. Kim, H. Choi, C. Nahm, C. Kim, J. Ik Kim, W. Lee, S. Kang, B. Lee, T. Hwang, H. Hejin Park, B. Park, Appl. Phys. Lett. 102, 183901 (2013)

    Article  Google Scholar 

  16. H.J. Lee, J. Bang, J. Park, S. Kim, S.M. Park, Chem. Mater. 22, 5636 (2010)

    Article  Google Scholar 

  17. S. Banerjee, S.K. Mohapatra, P.P. Das, M.S. Misra, Chem. Mater. 20, 6784 (2008)

    Article  Google Scholar 

  18. L. Wang, Y. Liu, X. Jiang, D. Qin, Y. Cao, J. Phys. Chem. C 111, 9538 (2007)

    Article  Google Scholar 

  19. Y. Kang, D. Kim, Sol. Energy Mater. Sol. Cells 90, 166 (2006)

    Article  Google Scholar 

  20. X. Jiang, F. Chen, Q. Weiming, Q. Yan, Y. Nan, H. Xu, L. Yang, H. Chen, Sol. Energy Mater. Sol. Cells 94, 2223 (2010)

    Article  Google Scholar 

  21. H.C. Leventis, S.P. King, A. Sudlow, M.S. Hill, K.C. Molloy, S.A. Haque, Nano Lett. 10, 1253 (2010)

    Article  Google Scholar 

  22. M. Zhong, D. Yang, J. Zhang, J. Shi, X. Wang, C. Li, Sol. Energy Mater. Sol. Cells 96, 160 (2012)

    Article  Google Scholar 

  23. N. Balis, V. Dracopoulos, E. Stathatos, N. Boukos, P. Lianos, J. Phys. Chems. C 115, 10911 (2011)

    Article  Google Scholar 

  24. P. Ravirajan, D.D.C. Bradley, J. Nelson, S.A. Haque, J.R. Durrant, H.J.P. Smit, J.M. Kroon, Appl. Phys. Lett. 86, 143101 (2005)

    Article  Google Scholar 

  25. C. Goh, S.R. Scully, M.D. McGehee, J. Appl. Phys. 101, 114503 (2007)

    Article  Google Scholar 

  26. X.F. Gao, W.T. Sun, Z.D. Hu, G. Ai, Y.L. Zhang, S. Feng, F. Li, L.M. Peng, J. Phys. Chem. C 113, 20481 (2009)

    Article  Google Scholar 

  27. E.D. Spoerke, M.T. Lloyd, E.M. McCready, D.C. Olson, Y.J. Lee, J.W.P. Hsu, Appl. Phys. Lett. 95, 213506 (2009)

    Article  Google Scholar 

  28. L.X. Reynolds, H. Lutz, S. Dowland, A. MacLachlan, S. King, S.A. Haque, Nanoscale 4, 1561 (2012)

    Article  Google Scholar 

  29. C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Adv. Funct. Mater. 11, 374 (2001)

    Article  Google Scholar 

  30. T. Ishwara, D.D.C. Bradley, J. Nelson, P. Ravirajan, I. Vanseveren, T. Cleij, D. Vanderzande, L. Lutsen, S. Tierney, M. Heeney, I. McCulloch, Appl. Phys. Lett. 92, 053308 (2008)

    Article  Google Scholar 

  31. J. Hou, M.H. Park, S. Zhang, Y. Yao, L.M. Chen, J.H. Li, Y. Yang, Macromolecules 41, 6012 (2008)

    Article  Google Scholar 

  32. M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Adv. Mater. 18, 789 (2006)

    Article  Google Scholar 

  33. S. Loheeswaran, K. Balashangar, J. Jevirshan, P. Ravirajan, J. Nanoelectron. Optoelectron 8, 484 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Dr. K. Vignarooban for his critical discussion during preparation of this manuscript. P. R and K. B acknowledge the National Research Council (NRC), Sri Lanka and Sivananthan Laboratories Inc. USA for financial assistance (Research Grant No. 11-175) and their training at the laboratory, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravirajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanihaichelvan, M., Sockiah, K., Balashangar, K. et al. Cadmium sulfide interface layer for improving the performance of titanium dioxide/poly (3-hexylthiophene) solar cells by extending the spectral response. J Mater Sci: Mater Electron 26, 3558–3563 (2015). https://doi.org/10.1007/s10854-015-2869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2869-7

Keywords

Navigation