Skip to main content
Log in

Frequency and temperature dependence dielectric study of strontium modified Barium Zirconium Titanate ceramics obtained by mechanochemical synthesis

Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A detailed investigation of the crystal structure and electrical properties of Ba1−xSrxZr0.05Ti0.95O3 (x = 0.1, 0.2, 0.3 and 0.5) ceramics prepared using high energy ball milling is presented in this manuscript. The X-ray diffraction patterns confirmed the single phase formation of the examined compounds. The substitution of Sr2+ drove the crystal symmetry of the system from tetragonal to cubic at x = 0.3. The structural conformation was also carried out employing the Rietveld refinement analysis. The microstrutural study was developed through the scanning electron microscopy, which showed a decrement in the grain size with Sr doping. Using the impedance spectroscopic technique, the electrical microstructure of the system was presented and the overall electrical properties indicated the presence of grains separated by grain boundaries and is explained in terms of the bricklayer model. Negative temperature coefficient of resistance behavior was observed in all compositions. The activation energy estimated from impedance, modulus and conductivity formalism confirmed that the oxygen vacancies play an important role in the conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Goodman, Ceramic capacitor materials, in Ceramic Materials for Electronics (Marcel Dekker, New York, 1986)

    Google Scholar 

  2. L.L. Hench, L.K. West principles of electronic ceramics. New York: John Wiley & Sons. Inc. (1990)

  3. T.G. Reynolds, Application space influences electronic ceramic materials. Am. Ceram. Soc. Bull. 80, 29–32 (2001)

    Google Scholar 

  4. Y. Park, Y.H. Kim, H.G. Kim, The effect of grain size on dielectric behavior of BaTiO3-based X7R materials. Mater. Lett. 28, 101–106 (1996)

    Article  Google Scholar 

  5. F. Azough, R. Al, Saffar, R. Freer, A transmission electron microscope study of commercial X7R-type multilayer ceramic capacitors. J. Eur. Ceram. Soc. 18, 751–758 (1998)

    Article  Google Scholar 

  6. H. Kishi, Y. Mizuno, H. Chazono, Base-metal Electrode multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1–15 (2003)

    Article  Google Scholar 

  7. R.Z. Chen, A.L. Cui, X.H. Wang, L. Li, Barium titanate coated with magnesium titanate via fused salt method and its dielectric property. Mater. Sci. Eng., B 99, 302–305 (2003)

    Article  Google Scholar 

  8. J.F. Chen, Z.G. Shen, F.T. Liu, X.L. Liu, J. Yun, Preparation and properties of barium titanate nanopowder by conventional and high-gravity reactive precipitation methods. Scr. Mater. 49, 509–514 (2003)

    Article  Google Scholar 

  9. K. Uchino, Ferroelectric devices, ferroelectric devices (Marcel Dekker, New York, 2000)

    Google Scholar 

  10. S.K. Jo, S.H. Kang, Y.H. Han, Redox behavior and electrical properties of Sr and Zr substituted BaTiO3. J. Electroceram. 31, 189–193 (2013)

    Article  Google Scholar 

  11. R.D. Levi, Ph.D. Thesis, Penn State University (2009)

  12. J.A. Basmajian, R.S. De Vries, Phase Equilibria in the System BaTiO3-SrTiO3. J. Am. Ceram. Soc. 40, 373–376 (1957)

    Article  Google Scholar 

  13. J. Bera, S.K. Rout, On the formation mechanism of BaTiO3–BaZrO3 solid solution through solid-oxide reaction. Mater. Lett. 59, 135–138 (2005)

    Article  Google Scholar 

  14. L.E. Cross, Relaxor Ferroelectrics. Ferroelectrics 76, 241–247 (1987)

    Article  Google Scholar 

  15. S. Nomura, Dielectric properties of titanates containg Sn4+ Ions I. J. Phys. Soc. Jpn. 10, 112–119 (1955)

    Article  Google Scholar 

  16. G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya, A new group of ferroelectrics (with layered structure)”. Soviet Physics Solid State 1, 149–150 (1959)

    Google Scholar 

  17. M.A.L. Nobre, S. Lanfredi, Dielectric properties of Bi3Zn2Sb3O14 ceramics at high temperature. Mater. Lett. 47, 362–366 (2001)

    Article  Google Scholar 

  18. S. Sen, R.N.P. Choudhary, Dielectric relaxation in Sr modified PST ceramics. Appl. Phys. A 87, 727–731 (2007)

    Article  Google Scholar 

  19. J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid State Material and Sytems (Wiley, New York, 1987)

    Google Scholar 

  20. S. Kumar, K.B.R. Varma, Dielectric relaxation in bismuth layer-structured BaBi4Ti4O15 ferroelectric ceramics. Curr. Appl. Phys. 11, 203–210 (2011)

    Article  Google Scholar 

  21. P. Thangadurai, V. Sabarinathan, A.C. Bose, S. Ramasamy, Conductivity behaviour of a cubic/tetragonal phase stabilized nanocrystalline La2O3–ZrO2. J. Phys. Chem. Solids 65, 1905–1912 (2004)

    Article  Google Scholar 

  22. T. Kimura, M. Machida, T. Yamaguchi, R.E. Newnham, Products of Reaction Between PbO and Nb2O5, in Molten KCl and NaClJ. Am. Ceram Soc. 66, 195–197 (1983)

    Article  Google Scholar 

  23. C. Ang, Z. Yu, Z. Jing, P. Lunkenheimer, A. Loidl, Dielectric spectra and electrical conduction in Fe-doped SrTiO3. Phys. Rev. B 61, 3922 (2000)

    Article  Google Scholar 

  24. S. Sen, R.N.P. Choudhary, A. Tarafdar, P. Pramanik, Impedance spectroscopy study of strontium modified lead zirconate titanate ceramics. J. Appl. Phys. 99, 124114 (2006)

    Article  Google Scholar 

  25. P.B. Macedo, C.T. Moynihan, R. Bose, The role of ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glasses 13, 171–179 (1972)

    Google Scholar 

  26. N. Ortega, A. Kumar, P. Bhattacharaya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic PbZrxTi1−xO3/CoFe2O4 layered thin film. Phys. Rev. B 77, 014111–014120 (2008)

    Article  Google Scholar 

  27. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. 106, 024102–024104 (2009)

    Article  Google Scholar 

  28. O. Raymond, R. Font, N. Suáerz-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe 0.5 Nb 0.5 )O 3  ceramics obtained by different precursors. Part II. Impedance Spectroscopy Characterization. J. Appl. Phys. 97, 084108–084115 (2005)

    Article  Google Scholar 

  29. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  30. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  31. J.S. Kim, I.W. Kim, C.W. Ahn, T.K. Song, S.S. Kim, S.X. Chi, J.S. Bae, J.H. Jeong, Conduction behavior of SrBi2Ta2O9 thin film grown by pulsed laser deposition. Jpn. J. Appl. Phys. 41, 6785–6789 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Badapanda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badapanda, T., Sarangi, S., Parida, S. et al. Frequency and temperature dependence dielectric study of strontium modified Barium Zirconium Titanate ceramics obtained by mechanochemical synthesis. J Mater Sci: Mater Electron 26, 3069–3082 (2015). https://doi.org/10.1007/s10854-015-2799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2799-4

Keywords

Navigation