Skip to main content
Log in

Silver stress migration bonding driven by thermomechanical stress with various substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, the requirement for environmentally friendly power electronics such as light-emitting diodes and integrated power modules has led to substantial efforts in electronic packaging. The high operating temperatures of advanced power devices particularly require alternative bonding materials to replace the high-temperature solders that contain much Pb. Without limiting the conventional soldering processes that use melting alloys, several candidate materials have been developed, along with the development of devices. In this study, we demonstrate Ag stress migration bonding with various substrate materials to address the intrinsic mechanisms underlying the bonding process. Varying the substrate material changes the thermal expansion mismatch between the sputtered Ag films and the substrate, resulting in different bonding properties, in particular the die shear strength. It has been revealed that a low bonding temperature process can be achieved with a high thermal stress, suggesting that stress migration and resulting stress relaxation at the bonding temperature play key roles in controlling the Ag stress migration bonding. This Ag stress migration bonding opens up a novel opportunity to access wide band-gap devices by realizing low-temperature processes without any application of pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Kim, K.-S. Kim, K. Suganuma, G. Izuta, J. Electron. Mater. 38, 873 (2009)

    Article  Google Scholar 

  2. S. Kim, K.-S. Kim, S.-S. Kim, K. Suganuma, G. Izuta, J. Electron. Mater. 38, 2668 (2009)

    Article  Google Scholar 

  3. V. Chidambaram, J. Hattel, J. Hald, Microelectron. Eng. 88, 981 (2011)

    Article  Google Scholar 

  4. S.W. Park, T. Sugahara, K.S. Kim, K. Suganuma, J. Alloys Compd. 542, 236 (2012)

  5. H.A. Mustain, W.D. Brown, S.S. Ang, IEEE Trans. Compon. Packag. Technol. 33, 563 (2010)

    Article  Google Scholar 

  6. W. Zhang, W. Ruythooren, J. Electron. Mater. 37, 1095 (2008)

    Article  Google Scholar 

  7. S. Sakamoto, S. Nagao, K. Suganuma, J. Mater. Sci.: Mater. Electron. 24, 2593 (2013)

    Google Scholar 

  8. S. Sakamoto, T. Sugahara, K. Suganuma, J. Mater. Sci.: Mater. Electron. 24, 1332 (2013)

    Google Scholar 

  9. A.D. Albert, M.F. Becker, J.W. Keto, D. Kovar, Acta Mater. 56, 1820 (2011)

    Article  Google Scholar 

  10. H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. B 41B, 824 (2010)

    Article  Google Scholar 

  11. C. Oh, S. Nagao, T. Kunimune, K. Suganuma, Appl. Phys. Lett. 104, 161603 (2014)

    Article  Google Scholar 

  12. C. Oh, S. Nagao, T. Sugahara, K. Suganuma, Mater. Lett. 137, 170 (2014)

    Article  Google Scholar 

  13. D.K. Kim, W.D. Nix, R.P. Vinci, M.D. Deal, J.D. Plumer, J. Appl. Phys. 90, 781 (2001)

    Article  Google Scholar 

  14. S.-J. Hwang, W.D. Nix, Y.-C. Joo, Acta Mater. 55, 5297 (2007)

    Article  Google Scholar 

  15. R. Daniel, D. Holec, M. Bartosik, J. Keckes, C. Mitterer, Acta Mater. 59, 6631 (2011)

    Article  Google Scholar 

  16. Z. Li, R.C. Bradt, J. Appl. Phys. 60, 612 (1986)

    Article  Google Scholar 

  17. G.K. White, T.F. Smith, R.H. Carr, Gryogenics 18, 301 (1978)

    Article  Google Scholar 

  18. J.A. Cowan, A.T. Pawlowicz, G.K. White, Gryogenics 8, 155 (1968)

    Article  Google Scholar 

  19. K.M. Zwilsky, ASM handbook vol. 2—properties and selection: nonferrous alloys and special purpose materials, 10th edn. (ASM International, USA, 2011), p. 2969

    Google Scholar 

  20. P. Villain, P.-O. Renault, Ph Goudeau, K.F. Badawi, Thin Solid Films 406, 185 (2002)

    Article  Google Scholar 

  21. M. Chinmulgund, R.B. Inturi, J.A. Barnard, Thin Solid Films 270, 260 (1995)

    Article  Google Scholar 

  22. K. Kamitani, M. Grimsditch, J.C. Nipko, C.-K. Loong, M. Okada, I. Kimura, J. Appl. Phys. 82, 3152 (1997)

    Article  Google Scholar 

  23. S. Karmann, R. Helbig, R.A. Stein, J. Appl. Phys. 66, 3922 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (Grant No. 24226017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijo Nagao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, C., Nagao, S. & Suganuma, K. Silver stress migration bonding driven by thermomechanical stress with various substrates. J Mater Sci: Mater Electron 26, 2525–2530 (2015). https://doi.org/10.1007/s10854-015-2717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2717-9

Keywords

Navigation