Skip to main content
Log in

Effect of nitrate concentration on the electrochemical growth and properties of ZnO nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanostructures were deposited under potentiostatic control on indium tin oxide coated glass substrate from an aqueous solution containing zinc nitrates. Voltammograms were recorded to determine the optimal potential region for the deposition of ZnO. The deposition was carried out at various concentrations of Zn+2 and constant bath temperature (65 °C). The nucleation and growth kinetics at the initial stages of ZnO studied by current transients indicated a 3D island growth (Volmer–Weber). It is characterized by an instantaneous nucleation mechanism followed by diffusion-limited growth. The Mott–Schottky measurements, the flat band potential and the donor density for the ZnO nanostructures were determined. The morphological, structural, and optical properties of the nanostructures have been investigated. Scanning electron microscopy images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Zn+2. X-ray diffraction study confirms the wurtzite phase of the ZnO nanostructures with high crystallinity. UV–visible spectra showed a significant optical transmission (up to 90 %), which decreased with Zn2+ concentrations. The energy band gap values have been estimated to be in the range 3.36–3.54 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.T. Shi, L.M. Qi, J.M. Ma, H.M. Cheng, J. Am. Chem. Soc. 125, 3450–3451 (2003)

    Article  Google Scholar 

  2. X. Lan, J.Y. Zhang, H. Gao, T.M. Wang, Cryst. Eng. Comm. 13, 633–636 (2011)

    Article  Google Scholar 

  3. S. Tuzemen, E. Gur, T. Yildirım, G. Xiong, R.T. Williams, J. Appl. Phys. 100, 103513 (2006)

    Article  Google Scholar 

  4. L.J. Mandalapu, F.X. Xiu, Z. Yang, D.T. Zhao, J.L. Liu, Appl. Phys. Lett. 88, 112108 (2006)

    Article  Google Scholar 

  5. M.R. Khelladi, L. Mentar, A. Beniaiche, L. Makhloufi, A. Azizi, J. Mat. Sci. Mater. Electron. 24, 153–159 (2013)

    Article  Google Scholar 

  6. M.R. Khelladi, L. Mentar, M. Boubatra, A. Azizi, Mater. Lett. 67, 331–333 (2012)

    Article  Google Scholar 

  7. S. Chatterjee, S. Gohil, B. Chalke, P. Ayyub, J. Nanosci. Nanotechnol. 9, 4792–4796 (2009)

    Article  Google Scholar 

  8. F. Xu, Y.N. Lu, Y. Xie, Y.F. Liu, Mater. Des. 30, 1704–1711 (2009)

  9. A.I. Inamdar, S.H. Mujawar, V. Ganesan, P.S. Patil, Nanotechnology 19, 325706 (2008)

    Article  Google Scholar 

  10. T. Pauporte, E. Jouanno, F. Pelle, B. Viana, P. Aschehoug, J. Phys. Chem. C 113, 10422–10431 (2009)

    Article  Google Scholar 

  11. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H. Lee, J. Appl. Phys. Lett. 81, 3648–3650 (2002)

    Article  Google Scholar 

  12. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113–116 (2001)

    Article  Google Scholar 

  13. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947–1949 (2001)

    Article  Google Scholar 

  14. X. Fang, L. Zhang, J. Mater. Sci. Technol. 22, 1–18 (2006)

    Article  Google Scholar 

  15. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, L. Lin, Appl. Phys. Lett. 84, 3654–3656 (2004)

    Article  Google Scholar 

  16. Y. Jouane, P. Lévêque, T. Heiser, S. Colis, G. Schmerber, C. Leuvrey, A. Dinia, Y.A. Chapuis, J. Mat. Chem. 22, 1606–1612 (2012)

    Article  Google Scholar 

  17. Y.R. Ryu, W.J. Kim, H.W. White, J. Cryst. Growth 219, 419–422 (2000)

    Article  Google Scholar 

  18. X. Wang, J. Song, Z.L. Wang, J. Mater. Chem. 17, 711 (2007)

    Article  Google Scholar 

  19. H. Yu, Z. Zhang, M. Han, X. Hao, F. Zhu, J. Am. Chem. Soc. 127, 2378–2379 (2005)

    Article  Google Scholar 

  20. L. Vayssieres, Adv. Mater. 15, 464–466 (2003)

    Article  Google Scholar 

  21. B. Cao, Y. Li, G. Duan, W. Cai, Cryst. Growth Des. 6, 1091 (2006)

    Article  Google Scholar 

  22. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. Choi, J. Adv. Funct. Mater. 12, 323–331 (2002)

    Article  Google Scholar 

  23. B. Illy, B.A. Shollock, J.L. MacManus-Driscoll, M.P. Ryan, Nanotechnology 16, 320–324 (2005)

    Article  Google Scholar 

  24. L.F. Xu, Q. Liao, J. Zhang, X. Ai, D. Xu, J. Phys. Chem. C 111, 4549–4552 (2007)

    Article  Google Scholar 

  25. Z.R. Tian, J.A. Voigt, J. Liu, M.A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2, 821–826 (2003)

    Article  Google Scholar 

  26. Q. Li, K. Cheng, W.J. Weng, C.L. Song, P.Y. Du, G. Shen, G.R. Han, Nanoscale Res. Lett. 6, 477–487 (2011)

    Article  Google Scholar 

  27. K.S. Kim, H. Jeong, M.S. Jeong, G.Y. Jung, Adv. Funct. Mater. 20, 3055–3063 (2010)

    Article  Google Scholar 

  28. J.J. Dong, C.Y. Zhen, H.Y. Hao, J. Xing, Z.L. Zhang, Z.Y. Zheng, X.W. Zhang, Nanoscale Res. Lett. 8, 378 (2013)

    Article  Google Scholar 

  29. B.N. Illy, A.C. Cruickshank, S. Schumann, R. Da Campo, T.S. Jones, S. Heutz, M.A. McLachlan, D.W. McComb, D.J. Rileya, M.P. Ryan, J. Mater. Chem. 21, 12949–12957 (2011)

    Article  Google Scholar 

  30. J.D. Saunderson, R. Swanepoel, M.J. van Staden, Sol. Energy Mater. Sol. Cells 51, 425–432 (1998)

    Article  Google Scholar 

  31. T. Yoshida, D. Komatsu, N. Shimokawa, H. Minoura, Thin Solid Films 451, 166–169 (2004)

    Article  Google Scholar 

  32. S.J. Limmer, E.A. Kulp, J.A. Switzer, Langmuir 22, 10535–10539 (2006)

    Article  Google Scholar 

  33. O. Lupan, T. Pauporte, T.L. Bahers, I. Ciofini, B. Viana, J. Phys. Chem. C 115, 1454–14558 (2011)

    Article  Google Scholar 

  34. M. Kemell, F. Dartigues, Ritala M and Leskela. Thin Solid Films 434, 20–23 (2003)

    Article  Google Scholar 

  35. D.F. Watson, A. Marton, A.M. Stux, G.J. Meyer, J. Phys. Chem. B 107, 10971–10973 (2003)

    Article  Google Scholar 

  36. C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke, S.J. Chua, Nanotechnology 15, 856–861 (2004)

    Article  Google Scholar 

  37. D. Pradhan, K. Susanta, S. Mohapatra, M. Tymen, K. Misra, T. Leung, Mater. Express 1, 59–67 (2011)

    Article  Google Scholar 

  38. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)

    Google Scholar 

  39. K.L. Chopra, Thin film phenomena (McGraw-Hill, New York, 1969)

    Google Scholar 

  40. K. Ravichandran, G. Muruganantham, B. Sakthivel, Physica B 404, 4299–4302 (2009)

    Article  Google Scholar 

  41. D.S. Ginley, H. Hosono, D.C. Paine, Handbook of Transparent Conductors (Springer, London, 2010)

    Google Scholar 

  42. J. Tauc, in Optical Properties of Solids 22, ed. by F. Abeles (North Holland Pub, Amsterdam, 1970)

  43. J. Xue, Q. Shen, W. Liang, X. Liu, L. Bian, B. Xu, Surf. Coat. Technol. 216, 166–171 (2013)

    Article  Google Scholar 

  44. S. Laidoudi, A.Y. Bioud, A. Azizi, G. Schmerber, J. Bartringer, S. Barre, A. Dinia, Semicond. Sci. Technol. 28, 115005 (2013)

    Article  Google Scholar 

  45. I. Soumahoro, R. Moubah, G. Schmerber, S. Colis, M. Ait Aouaj, M. Abd-lefdil, N. Hassanein, A. Berrada, A. Dinia, Thin Solid Films 518, 4593–4596 (2010)

    Article  Google Scholar 

  46. O. Baka, A. Azizi, S. Velumani, G. Schmerber, A. Dinia, J. Mat. Sci. Mater. Electron. 25, 1761–1769 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the DGRSDT-MESRS of Algeria for the financial support through the PNR program (2011–2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Azizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mentar, L., Baka, O., Khelladi, M.R. et al. Effect of nitrate concentration on the electrochemical growth and properties of ZnO nanostructures. J Mater Sci: Mater Electron 26, 1217–1224 (2015). https://doi.org/10.1007/s10854-014-2528-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2528-4

Keywords

Navigation