Skip to main content
Log in

Dielectric and ferroelectric properties of unfilled tungsten bronze KBa3RNb10O30 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Unfilled tungsten bronze ceramics with general formula KBa3RNb10O30 (R = La, Pr, Nd, Sm, Eu, Gd) were prepared by the conventional solid state reaction method. XRD patterns show that all ceramics are pure tungsten bronze phase. Dielectric characterization indicates that the ceramics except KBa3GdNb10O30 are relaxors with strong frequency dispersion, while KBa3GdNb10O30 shows diffuse phase transition and belongs to classical ferroelectrics. At room temperature, the KBa3RNb10O30 compounds (R = La, Pr, Nd) are paraelectrics while the KBa3RNb10O30 compounds (R = Sm, Eu, Gd) are ferroelectrics. Among them, KBa3GdNb10O30 has the highest remnant polarization (2P r ) of 8.2 μC/cm2. Phase transition temperature, remnant polarization (2P r ) and tetragonality of the compounds increase with the decrease of ionic radius of the rare earths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Castel, P. Veber, M. Albino, M. Velázquez, S. Pechev, D. Denux, J.P. Chaminade, M. Maglione, M. Josse, J. Cryst. Growth 340, 156 (2012)

    Article  Google Scholar 

  2. Y.B. Yao, C.L. Mak, J. Alloys Compd. 544, 87 (2012)

    Article  Google Scholar 

  3. F.L. Goupil, A.K. Axelsson, L.J. Dunne, M. Valant, G. Manos, T. Lukasiewicz, J. Dec, A. Berenov, N.M. Alford, Adv. Energy Mater. 4, 1301688 (2014)

    Article  Google Scholar 

  4. S. Zhang, F. Yu, J. Am. Ceram. Soc. 94, 3153 (2011)

    Article  Google Scholar 

  5. A. Rotaru, A.J. Miller, D.C. Arnold, F.D. Morrison, Philos. Trans. R. Soc. A 372, 20120451 (2014)

    Article  Google Scholar 

  6. X. Yin, L. Shi, A. Wei, D. Wan, Y. Wang, F. Huang, J. Solid State Chem. 192, 182 (2012)

    Article  Google Scholar 

  7. A. Simon, J. Ravez, C. R. Chim. 9, 1268 (2006)

    Article  Google Scholar 

  8. S. Zhang, G. Yuan, J. Chen, Z. Gu, B. Yang, J. Yin, W. Cao, J. Am. Ceram. Soc. 96, 555 (2013)

    Google Scholar 

  9. P.V. Bijumon, V. Kohli, O. Parkash, M.R. Varma, M.T. Sebastian, Mater. Sci. Eng. B 113, 13 (2004)

    Article  Google Scholar 

  10. P. Koshy, L.P. Kumari, M.T. Sebastian, J. Mater. Sci. Mater. Electron. 9, 43 (1998)

    Article  Google Scholar 

  11. X.M. Chen, Y.H. Sun, X.H. Zheng, J. Eur. Ceram. Soc. 23, 1571 (2003)

    Article  Google Scholar 

  12. M.C. Stennett, G.C. Miles, J. Sharman, I.M. Reaney, A.R. West, J. Eur. Ceram. Soc. 25, 2471 (2005)

    Article  Google Scholar 

  13. K. Li, X.L. Zhu, X.Q. Liu, X.M. Chen, Appl. Phys. Lett. 100, 012902 (2012)

    Article  Google Scholar 

  14. L. Fang, H. Zhang, J. Yan, W. Yang, Chinese. J. Inorg. Chem. 18, 1131 (2002)

    Google Scholar 

  15. S.R. Shannigrahi, R.N.P. Choudhary, A. Kumar, H.N. Acharya, J. Phys. Chem. Solids 59, 737 (1998)

    Article  Google Scholar 

  16. P. Ganguly, A.K. Jha, K.L. Deori, J. Alloys Compd. 484, 40 (2009)

    Article  Google Scholar 

  17. J. Zhang, G. Wang, F. Gao, C. Mao, F. Cao, X. Dong, Ceram. Int. 39, 1971 (2013)

    Article  Google Scholar 

  18. C.J. Huang, K. Li, X.Q. Liu, X.L. Zhu, X.M. Chen, J. Am. Ceram. Soc. 97, 507 (2014)

    Article  Google Scholar 

  19. C. Elissalde, J. Ravez, J. Mater. Chem. 10, 681 (2000)

    Article  Google Scholar 

  20. C.S. Pandey, J. Schreuer, M. Burianek, M. Muhlberg, Phys. Rev. B 87, 0941101 (2013)

    Article  Google Scholar 

  21. C.S. Pandey, J. Schreuer, M. Burianek, M. Muhlberg, Appl. Phys. Lett. 102, 022903 (2013)

    Article  Google Scholar 

  22. L. Wang, Y. Sakka, D.A. Rusakov, Y. Mozharivskyj, T. Kolodiazhnyi, Chem. Mater. 23, 2586 (2011)

    Article  Google Scholar 

  23. J. Gardner, F.D. Morrison, Dalton Trans. 43, 11687 (2014)

    Article  Google Scholar 

  24. S.M. Pilgrim, S.R. Sutherl, S.R. Winzer, J. Am. Ceram. Soc. 73, 3122 (1990)

    Article  Google Scholar 

  25. J. Ravez, A. Simon, J. Solid State Chem. 162, 260 (2001)

    Article  Google Scholar 

  26. X.L. Zhu, K. Li, M.A. Rafiq, X.Q. Liu, X.M. Chen, J. Appl. Phys. 114, 124102 (2013)

    Article  Google Scholar 

  27. C. Elissalde, J. Ravez, J. Mater. Chem. 11, 1957 (2001)

    Article  Google Scholar 

  28. R. Pirc, R. Blinc, Phys. Rev. B 76, 020101 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Scholarship Fund of China Scholarship Council under Grant (No. 2011845511), the Project of Guangxi Education Department under Grant (No. 201203YB087), the Natural Science Foundation of Guangxi under Grant (No. 2013GXNSFBA019230 and 2014GXNSFAA118350), the Science Foundation of Guilin under Grant (No.20120112-3) and the Project for Doctor in Guilin University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzheng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Sun, Z., Zhu, Q. et al. Dielectric and ferroelectric properties of unfilled tungsten bronze KBa3RNb10O30 ceramics. J Mater Sci: Mater Electron 26, 515–520 (2015). https://doi.org/10.1007/s10854-014-2429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2429-6

Keywords

Navigation