Skip to main content
Log in

High pressure synthesis of Te-doped CoSb3 with enhanced thermoelectric performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Te-doped CoSb3 skutterudites were successfully synthesized with high pressure synthesis method followed by spark plasma sintering. The introducing of Te atoms into the lattice sites of CoSb3 resulted in n-type electrical conductivity, which increased with elevated Te doping level. An enhanced power factor, larger than 4,000 µWm−1K−2 for temperatures higher than 650 K, was observed for Co4Sb11.5Te0.5. This is a significant value for skutterudites substituted with a single element. Meanwhile, the thermal conductivity of Te-doped CoSb3 was greatly suppressed due to stronger electron–phonon scattering. The optimized Co4Sb11.5Te0.5 showed a ZT value of 1.15 at 883 K, which rivals the state-of-the-art single elemental filled skutterudites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Caillat, A. Borshchevsky, J.P. Fleurial, J. Appl. Phys. 80, 4442 (1996)

    Article  Google Scholar 

  2. G.S. Nolas, D.T. Morelli, T.M. Tritt, Annu. Rev. Mater. Sci. 29, 89 (1999)

    Article  Google Scholar 

  3. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, C. Uher, J. Appl. Phys. 90, 1864 (2001)

    Article  Google Scholar 

  4. G.A. Slack, in CRC handbook of thermoelectrics, ed. by D.M. Rowe (CRC Press, Boca Raton, 1995), p. 407

    Google Scholar 

  5. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011)

    Article  Google Scholar 

  6. T. Caillat, J. Kulleck, A. Borshchevsky, J.P. Fleurial, J. Appl. Phys. 79, 8419 (1996)

    Article  Google Scholar 

  7. C. Zhou, J. Sakamoto, D. Morelli, X. Zhou, G. Wang, C. Uher, J. Appl. Phys. 109, 063722 (2011)

    Article  Google Scholar 

  8. H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara, H. Tashiro, J. Appl. Phys. 86, 3780 (1999)

    Article  Google Scholar 

  9. W.S. Liu, B.P. Zhang, J.F. Li, H.L. Zhang, L.D. Zhao, J. Appl. Phys. 102, 103717 (2007)

    Article  Google Scholar 

  10. X.L. Su, H. Li, G.Y. Wang, H. Chi, X.Y. Zhou, X.F. Tang, Q.J. Zhang, C. Uher, Chem. Mater. 23, 2948 (2011)

    Article  Google Scholar 

  11. X.Y. Li, L.D. Chen, J.F. Fan, W.B. Zhang, T. Kawahara, T. Hirai, J. Appl. Phys. 98, 083702 (2005)

    Article  Google Scholar 

  12. J.Y. Jung, M.J. Kim, S.W. You, S.C. Ur, I.H. Kim, in 25th international conference on thermoelectrics, (IEEE, Vienna, 2006), p. 443

  13. B. Duan, P. Zhai, L. Liu, Q. Zhang, X. Ruan, J. Mater. Sci.: Mater. Electron. 23, 1817 (2012)

    Google Scholar 

  14. L. Deng, L.B. Wang, X.P. Jia, H.A. Ma, J.M. Qin, Y.C. Wan, J. Alloys Compd. 602, 117 (2014)

    Article  Google Scholar 

  15. L. Deng, X.P. Jia, T.C. Su, Y.P. Jiang, S.Z. Zheng, X. Guo, H.A. Ma, Mater. Lett. 65, 1057 (2011)

    Article  Google Scholar 

  16. J. Zhang, B. Xu, L.-M. Wang, D. Yu, Z. Liu, J. He, Y. Tianb, Appl. Phys. Lett. 98, 072109 (2011)

    Article  Google Scholar 

  17. J. Zhang, B. Xu, L.-M. Wang, D. Yu, J. Yang, F. Yu, Z. Liu, J. He, B. Wen, Y. Tian, Acta Mater. 60, 1246 (2012)

    Article  Google Scholar 

  18. J. Yang, L. Zhang, Y. Liu, C. Chen, J. Li, D. Yu, J. He, Z. Liu, Y. Tian, B. Xu, J. Appl. Phys. 113, 113703 (2013)

    Article  Google Scholar 

  19. J.V. Badding, Annu. Rev. Mater. Sci. 28, 631 (1998)

    Article  Google Scholar 

  20. S.V. Ovsyannikov, V.V. Shchennikov, Chem. Mater. 22, 635 (2009)

    Article  Google Scholar 

  21. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  22. M.D. Segall, J.D.L. Philip, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002)

    Google Scholar 

  23. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  24. T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992)

    Article  Google Scholar 

  25. K. Wojciechowski, Mater. Res. Bull. 37, 2023 (2001)

    Article  Google Scholar 

  26. J.O. Sofo, G.D. Mahan, Phys. Rev. B 58, 15620 (1998)

    Article  Google Scholar 

  27. S.Q. Bai, Y.Z. Pei, L.D. Chen, W.Q. Zhang, X.Y. Zhao, J. Yang, Acta Mater. 57, 3135 (2009)

    Article  Google Scholar 

  28. Y.Z. Pei, S.Q. Bai, X.Y. Zhao, W. Zhang, L.D. Chen, Solid State Sci. 10, 1422 (2008)

    Article  Google Scholar 

  29. Y. Zhu, H. Shen, L. Zuo, H. Guan, Solid State Commun. 151, 1388 (2011)

    Article  Google Scholar 

  30. J.S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang, T. Hirai, J. Appl. Phys. 91, 3698 (2002)

    Article  Google Scholar 

  31. S. Katsuyama, Y. Shichijo, M. Ito, K. Majima, H. Nagai, J. Appl. Phys. 84, 6708 (1998)

    Article  Google Scholar 

  32. J. Nagao, M. Ferhat, H. Anno, K. Matsubara, E. Hatta, K. Mukasa, Appl. Phys. Lett. 76, 3436 (2000)

    Article  Google Scholar 

  33. Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, X.Y. Li, Appl. Phys. Lett. 89, 221107 (2006)

    Article  Google Scholar 

  34. Y.Z. Pei, J. Yang, L.D. Chen, W. Zhang, J.R. Salvador, J. Yang, Appl. Phys. Lett. 95, 042101 (2009)

    Article  Google Scholar 

  35. J.L. Mi, X.B. Zhao, T.J. Zhu, J.P. Tu, Appl. Phys. Lett. 91, 172116 (2007)

    Article  Google Scholar 

  36. R.C. Mallik, R. Anbalagan, G. Rogl, E. Royanian, P. Heinrich, E. Bauer, P. Rogl, S. Suwas, Acta Mater. 61, 6698 (2013)

    Article  Google Scholar 

  37. C. Stiewe, L. Bertini, M. Toprak, M. Christensen, D. Platzek, S. Williams, C. Gatti, E. Muller, B.B. Iversen, M. Muhammed, M. Rowe, J. Appl. Phys. 97, 044317 (2005)

    Article  Google Scholar 

  38. J.L. Mi, X.B. Zhao, T.J. Zhu, J. Ma, J. Alloys Compd. 452, 225 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2011CB808205), the National Science Foundation of China (51072175, 51172196, 51121061, 51201149, and 51332005), and the Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China (E2014203150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, X., Kang, Y. et al. High pressure synthesis of Te-doped CoSb3 with enhanced thermoelectric performance. J Mater Sci: Mater Electron 26, 385–391 (2015). https://doi.org/10.1007/s10854-014-2411-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2411-3

Keywords

Navigation