Skip to main content
Log in

Influence of substrate temperature on the properties of electrodeposited kesterite Cu2ZnSnS4 (CZTS) thin films for photovoltaic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We prepared Cu2ZnSnS4 (CZTS) films on Mo-coated glass substrates by using electrodeposition in an acidic electrolyte containing Cu, Zn, and Sn species. We examined how the substrate temperature influenced the compositional, structural, morphological, and electrical properties of the CZTS films by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), Raman spectroscopy, energy dispersive spectroscopy, and ultraviolet–visible absorption spectroscopy. The film sulfurized at a substrate temperature of 580 °C exhibited the best characteristics because of its large grain size and low number of voids. At a sufficiently high temperature, this fabrication process yielded single-phase CZTS with no secondary phases. The grain size increased with deposition temperature: the size at 580 °C was about twice that at 460 °C. All the CZTS films were Cu-rich and S-poor, with the composition changing at 580 °C. XRD revealed that the films had nanocrystalline kesterite structures, indicated by intense, sharp (112), (200), (220), and (312) diffraction peaks. The crystallite size was 34.6–57.3 nm, increasing with substrate temperature. FESEM indicated that the morphology improved with substrate temperature. The optical band gaps of the films were 1.36–1.49 eV, and their absorption coefficients were on the order of 10−4 cm−1, making them quite suitable for use in solar cells. We fabricated solar cells with a structure of soda-lime glass/Mo/Cu2ZnSnS4/CdS/i-ZnO/ZnO:Al/Al and achieved a maximum conversion efficiency of ~2.69 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.G. Dhere, Sol. Energy Mater. Sol. Cells 91, 1376 (2007)

    Article  Google Scholar 

  2. N. Nakayama, K. Ito, Appl. Surf. Sci. 92, 171 (1996)

    Article  Google Scholar 

  3. K. Wang, O. Gunawan, T. Todorov, B. Shin, S. Chey, N. Bojarczuk, D. Mitzi, S. Guha, Appl. Phys. Lett. 97, 143508 (2010)

    Article  Google Scholar 

  4. T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, H. Ogawa, Phys. Status Solidi (c) 3, 2844 (2006)

    Article  Google Scholar 

  5. A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kötschau, S. Schorr, H. Schock, Thin Solid Films 517, 2524 (2009)

    Article  Google Scholar 

  6. K. Moriya, K. Tanaka, H. Uchiki, Jpn. J. Appl. Phys. 47, 602 (2008)

    Article  Google Scholar 

  7. K. Moriya, J. Watabe, K. Tanaka, H. Uchiki, physica status solidi (c) 3, 2848 (2006)

    Article  Google Scholar 

  8. K. Tanaka, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 91, 1199 (2007)

    Article  Google Scholar 

  9. Y. Kumar, G.S. Babu, P.U. Bhaskar, V.S. Raja, Phys. Status Solidi (a) 206, 1525 (2009)

    Article  Google Scholar 

  10. J.J. Scragg, P. Dale, L.M. Peter, Thin Solid Films 517, 2481 (2009)

    Article  Google Scholar 

  11. S. Pawar, B. Pawar, A. Moholkar, D. Choi, J. Yun, J. Moon, S. Kolekar, J. Kim, Electrochim. Acta 55, 4057 (2010)

    Article  Google Scholar 

  12. H. Araki, Y. Kubo, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Phys. Status Solidi (c) 6, 1266 (2009)

    Article  Google Scholar 

  13. C. Chan, H. Lam, C. Surya, Sol. Energy Mater. Sol. Cells 94, 207 (2010)

    Article  Google Scholar 

  14. J.J. Scragg, P.J. Dale, L.M. Peter, Electrochem. Commun. 10, 639 (2008)

    Article  Google Scholar 

  15. P. Fernandes, P. Salomé, A. Da Cunha, Thin Solid Films 517, 2519 (2009)

    Article  Google Scholar 

  16. H. Yoo, J. Kim, Sol. Energy Mater. Sol. Cells 95, 239 (2011)

    Article  Google Scholar 

  17. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Exp. 1, 041201 (2008)

  18. Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, S.-X. Wu, J Phys. Chem. C 115, 19632 (2011)

    Article  Google Scholar 

  19. J.I. Pankove, Semiconductors and semimetals, vol. 21B (Academic Press, New york, 1984)

    Google Scholar 

  20. T. Todorov, M. Kita, J. Carda, P. Escribano, Thin Solid Films 517, 2541 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nano-optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia under Grant number 203/PSF-6721001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Mkawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkawi, E.M., Ibrahim, K., Ali, M.K.M. et al. Influence of substrate temperature on the properties of electrodeposited kesterite Cu2ZnSnS4 (CZTS) thin films for photovoltaic applications. J Mater Sci: Mater Electron 26, 222–228 (2015). https://doi.org/10.1007/s10854-014-2387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2387-z

Keywords

Navigation