Skip to main content
Log in

Enhanced electric field tunable magnetic properties of lead-free Na0.5Bi0.5TiO3–MnFe2O4 multiferroic composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Strong magnetoelectric (ME) interaction was exhibited at both dc and microwave frequencies in a lead-free multiferroic particulate composites of Na0.5Bi0.5TiO3 (NBT) and MnFe2O4 (MFO) multiferroic, which were prepared by sol–gel route. The room temperature permeability measurements were carried out in the frequency range of 1 MHz–1 GHz. A systematic study of structural, magnetic and ME properties were undertaken. The room temperature ferromagnetic resonance (FMR) was studied. Strong ME coupling is demonstrated in 70NBT–30MFO composite by an electrostatically tunable FMR field shift up to 428 Oe (at E = 4 kV/cm), which increases to a large value of 640 Oe at E = 8 kV/cm. Furthermore, these lead-free multiferroic composites exhibiting electrostatically induced magnetic resonance field at microwave frequencies provide great opportunities for electric field tunable microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.W. Martin, R. Ramesh, Acta Mater. 60, 2449 (2012)

    Article  Google Scholar 

  2. R. Ramesh, N.A. Spladin, Nat. Mater. 6, 21 (2007)

    Article  Google Scholar 

  3. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  4. H. Schmid, Ferroelectrics 162, 317 (1994)

    Article  Google Scholar 

  5. S. Lee, A. Pirogov, M. Kang, K.-H. Jang, M. Yonemura, T. Kamiyama, S.W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, J.G. Park, Nature 451, 805 (2008)

    Article  Google Scholar 

  6. F.A. Smolenskii, I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982)

    Article  Google Scholar 

  7. C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Adv. Mater. 22, 2900 (2010)

    Article  Google Scholar 

  8. M. Fiebig, J. Phys. D 38, R 123 (2005)

    Article  Google Scholar 

  9. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salmanaca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, T. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303, 661 (2004)

    Article  Google Scholar 

  10. C. Pettiford, S. Dasgupta, J. Lou, S.D. Yoon, N.X. Sun, IEEE. Trans. Magn. 43, 3343 (2007)

    Article  Google Scholar 

  11. Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 93, 033508 (2008)

    Article  Google Scholar 

  12. J. Lou, M. Liu, D. Reed, Y. Ren, N.X. Sun, Adv. Mater. 21, 4711 (2009)

    Article  Google Scholar 

  13. M. Liu, O. Obi, J. Lou, S. Stoute, Z. Cai, K. Ziemer, N.X. Sun, J. Phys. D 42, 045007 (2009)

    Article  Google Scholar 

  14. E. Cross, Nature 432, 24 (2004)

    Article  Google Scholar 

  15. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  Google Scholar 

  16. Melanie Groting, Silke Hayn, Karsten Albe, J. Solid State Chem. 184, 2041 (2011)

    Article  Google Scholar 

  17. Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 105, 084112 (2009)

    Article  Google Scholar 

  18. H. Nagata, Jpn. J. Ceram Soc. 116, 271 (2008)

    Article  Google Scholar 

  19. Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 7409 (2006)

    Article  Google Scholar 

  20. J.E. Daniels, W. Jo, J. Rodel, J.L. Jones, Appl. Phys. Lett. 95, 032904 (2009)

    Article  Google Scholar 

  21. G. Pitch, J. Topfer, E. Hennig, J. Eur. Ceram. Soc. 30, 3445 (2010)

    Article  Google Scholar 

  22. A.J. Royles, A.J. Bell, A.P. Jephcoat, A.K. Kleppe, S.J. Milne, T.P. Comyn, Appl. Phys. Lett. 97, 132909 (2010)

    Article  Google Scholar 

  23. D.Q. Xiao, L. Wu, J.G. Zhu, IEEE International Symposium on Applications of Ferroelectrics (ISAF2009) (Xiam, China, 3–27 August 2009) doi:10.1109/ISAF.2009.5307596

  24. B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115 (2002)

    Article  Google Scholar 

  25. O. Yuqiu, Y. Haibin, Y. Nan, F. Yuzun, Z. Hongyang, Z. Guangtian, Mater. Lett. 60, 3548 (2006)

    Article  Google Scholar 

  26. Q.M. Wei, Jian-biao Li, Yong-jun Chen, Yong-sheng Han, Mater. Charact. 47, 247 (2001)

    Article  Google Scholar 

  27. F. Chen, Q.F. Zhang, J.H. Li, Y.J. Qi, C.J. Lu, X.B. Chen, X.M. Ren, Y. Zhao, Appl. Phys. Lett. 89, 092910 (2006)

    Article  Google Scholar 

  28. K. Praveena, K.B.R. Varma, J. Mater. Sci. Mater. Electron. 25, 111 (2014)

    Article  Google Scholar 

  29. T. Tsutaoka, M. Ueshima, T. Tokunaga, T. Nakamura, K. Hatamura, J. Appl. Phys. 78, 3983 (1995)

    Article  Google Scholar 

  30. J.V. Mantese, A.L. Micheli, D.F. Dungan, R.G. Geyer, James Baker Jarvis, John Grosvenor, J. Appl. Phys. 79, 1655 (1996)

    Article  Google Scholar 

  31. W. Doring, Z.Naturforsch, 3a, 374 (1948)

  32. Z. Yue, Shaofeng Chen, Xiwei Qi, J. Alloys Compd. 375, 243 (2004)

    Article  Google Scholar 

  33. J.V. Mantese, A.L. Micheli, D.F. Dungan, R.G. Geyer, J. Baker Jarvis, J. Grosvenor, J. Appl. Phys. 79, 1655 (1996)

    Article  Google Scholar 

  34. D. Stoppels, J. Magn. Magn. Mater. 323, 160 (1996)

    Google Scholar 

  35. A.A. Bush, Y.K. Fetisov, K.E. Kamentsev, V.F. Meshcheryakov, G. Srinivasan, J. Magn. Magn. Mater. 45, 258 (2003)

    Google Scholar 

  36. Matjaz Spreitzer, Matjaz Valant, Danilo Suvorov, J. Mater. Chem. 17, 185 (2007)

    Article  Google Scholar 

  37. L. Zhang, J. Zhai, W. Mo, Xi Yao, Solid State Sci. 13, 321 (2011)

    Article  Google Scholar 

  38. R.Y. Zheng, J. Wang, S. Ramakrishna, J. Appl. Phys. 104, 034106 (2008)

    Article  Google Scholar 

  39. W. Chen, Z.H. Wang, W. Zhu, O.K. Tan, J. Phys. D Appl. Phys. 42, 075421 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Dr. K. Praveena thanks University Grants Commission (UGC), New Delhi for Dr. D.S. Kothari Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Praveena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveena, K., Varma, K.B.R. Enhanced electric field tunable magnetic properties of lead-free Na0.5Bi0.5TiO3–MnFe2O4 multiferroic composites. J Mater Sci: Mater Electron 25, 5403–5409 (2014). https://doi.org/10.1007/s10854-014-2320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2320-5

Keywords

Navigation