Skip to main content
Log in

Growth and temperature dependent characterization of pulsed laser deposited Ag/n-ZnO/p-Si/Al heterojunction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ag/n-ZnO/p-Si(100)/Al heterojunction diodes were fabricated by pulsed laser deposition of zinc oxide (ZnO) thin films on p-type silicon. The X-ray diffraction analysis shows the formation of ZnO thin film with hexagonal structure having strong (002) plane as preferred orientation. The energy band gap of ZnO films simultaneously deposited on quartz substrate was calculated from the measured UV–Visible transmittance spectra. High purity vacuum evaporated silver and aluminum thin films were used to make contacts to the n-ZnO and p-silicon, respectively. The current–voltage and capacitance–voltage characteristics of Ag/n-ZnO/p-Si(100)/Al heterostructures were measured over the temperature range of 80–300 K. The Schottky barrier height and ideality factor were determined by fitting of the measured current–voltage data into thermionic emission diffusion equation. It is observed that the barrier height decreases and the ideality factor increases with decrease of temperature and the activation energy plot exhibit non-linear behavior. This decrease in barrier height and increase in ideality factor at low temperature are attributed to the occurrence Gaussian distribution of barrier heights. The capacitance–voltage characteristics of Ag/n-ZnO/p-Si(100)/Al heterojunction diode were also studied over the wide temperature range. Capacitance–voltage data are used to estimate the barrier height and impurity concentration in n-type ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.S. Al-Salman, M.J. Abdullah, Measurement 46, 1698 (2013)

    Article  Google Scholar 

  2. R.K. Gupta, K. Ghosh, P.K. Kahol, Mater. Lett. 64, 2022 (2010)

    Article  Google Scholar 

  3. M. Rajabi, R.S. Dariani, A. Iraji Zad, Sens. Actuators A 180, 11 (2012)

    Article  Google Scholar 

  4. M. Shafiei, J. Yu, R. Arsat, K. Kalantar-zadeh, E. Comini, M. Ferroni, G. Sberveglieri, W. Wlodarski, Sens. Actuators B 146, 507 (2010)

    Article  Google Scholar 

  5. A. Rahm, M. Lorenz, T. Nobis, G. Zimmermann, M. Grundmann, B. Fuhrmann, F. Syrowatka, Appl. Phys. A 88, 31 (2007)

    Article  Google Scholar 

  6. D. Valerini, A.P. Caricato, M. Lomascolo, F. Romano, A. Taurino, T. Tunno, M. Martino, Appl. Phys. A 93, 729 (2008)

    Article  Google Scholar 

  7. A. Elshaer, A. Bakin, A. Chemofor, J. Blasing, A. Krost, J. Stoimenos, B. Pecz, M. Kreye, A. Waag, Appl. Phys. A 88, 57 (2007)

    Article  Google Scholar 

  8. X. Li, E. Xin, L. Chen, J. Shi, C. Li, J. Zhang, Mater. Sci. Semicond. Process. 16, 1292 (2013)

    Article  Google Scholar 

  9. A.C. Mofor, A.S. Bakin, A. Elshaer, D. Fuhrmann, F. Bertram, A. Hangleiter, J. Christen, A. Waag, Appl. Phys. A 88, 17 (2007)

    Article  Google Scholar 

  10. H. Sheng, S. Muthukumar, N.W. Emanetoglu, Y. Lu, Appl. Phys. Lett. 80, 2132 (2002)

    Article  Google Scholar 

  11. M.S. Tomar, F. Garcia, Thin Solid Films 90, 419 (1982)

    Article  Google Scholar 

  12. S. Sarkar, S. Patra, S.K. Bera, G.K. Paul, R. Ghosh, Phys. E 46, 1 (2012)

    Article  Google Scholar 

  13. E.F. Keskenler, M. Tomakin, S. Dogan, G. Turgut, S. Aydin, S. Duman, B. Gurbulak, J. Alloys Compd. 550, 129 (2013)

    Article  Google Scholar 

  14. M.A. Gluba, N.H. Nickel, K. Hinrichs, J. Rappich, J. Appl. Phys. 113, 043502 (2013)

    Article  Google Scholar 

  15. M. Novotny, J. Cizek, R. Kuzel, J. Bulir, J. Lancok, J. Connolly, E. McCarthy, S. Krishnamurthy, J.P. Mosnier, W. Anwand, G. Brauer, J. Phys. D Appl. Phys. 45, 225101 (2012)

    Article  Google Scholar 

  16. Y. Zhang, X. Zheng, X. Zhong, S. Deng, Meas. Sci. Technol. 23, 105107 (2012)

    Article  Google Scholar 

  17. M. Gupta, F.R. Chowdhury, D. Barlage, Y.Y. Tsui, Appl. Phys. A 110, 793 (2013)

    Article  Google Scholar 

  18. C. Periasamy, R. Prakash, P. Chakrabarti, J. Mater. Sci. Mater. Electron. 21, 309 (2010)

    Article  Google Scholar 

  19. A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, S. Amara, Adv. Mater. Phys. Chem. 3, 209 (2013)

    Article  Google Scholar 

  20. X. Zhang, F. Hai, C. Jia, X. Sun, L. Ding, W. Zhang, Microelectron. Eng. 93, 5 (2012)

    Article  Google Scholar 

  21. C. Tsiarapas, D. Girginoudi, N. Georgoulas, Mater. Sci. Semicond. Process. 17, 199 (2014)

    Article  Google Scholar 

  22. Joint Committee on Powder Diffraction Standards, Powder Diffraction File 36-1451, International Center for Diffraction Data, Swarthmore, PA (1997)

  23. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1979)

    Google Scholar 

  24. F. Zahedi, R.S. Dariani, S.M. Rozati, Sens. Actuators A 199, 123 (2013)

    Article  Google Scholar 

  25. B. Ismail, M. Abaab, B. Rezig, Thin Solid Films 383, 92 (2001)

    Article  Google Scholar 

  26. J. Tauc, F. Abeles, Optical Properties of Solids (North-Holland, Amsterdam, 1971), p. 277

    Google Scholar 

  27. R.E. Marotti, C.D. Bojorge, E. Broitman, H.R. Canepa, J.A. Badan, E.A. Dalchiele, A.J. Gellman, Thin Solid Films 517, 1077 (2008)

    Article  Google Scholar 

  28. G. Srinivasan, J. Kumar, J. Cryst. Growth 310, 1841 (2008)

    Article  Google Scholar 

  29. T. Ratana, P. Amornpitoksuk, T. Ratana, S. Suwanboon, J. Alloys Compd. 470, 408 (2009)

    Article  Google Scholar 

  30. F.M. Ali, M.K. Abu-Assy, S. El-Gazzar, M. Iqbal, M. Hussain, Mater. Sci.-Pol. 30, 248 (2012)

    Article  Google Scholar 

  31. M. Stamataki, D. Tsamakis, J.P. Xanthakis, H.A. Ali, S. Esmaili, A.A. Iliadis, Microelectron. Eng. 104, 95 (2013)

    Article  Google Scholar 

  32. S. Chand, J. Kumar, J. Appl. Phys. 80, 288 (1996)

    Article  Google Scholar 

  33. J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522 (1991)

    Article  Google Scholar 

  34. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  35. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988)

    Google Scholar 

  36. F. Chaabouni, M. Abaab, B. Rezig, Superlattices Microstruct. 39, 171 (2006)

    Article  Google Scholar 

  37. Y.P. Song, R.L.V. Meirhaeghe, W.H. Laflere, F. Cardon, Solid State Electron. 29, 633 (1986)

    Article  Google Scholar 

  38. B. Akkal, Z. Benamara, B. Gruzza, L. Bideux, Vacuum 57, 219 (2000)

    Article  Google Scholar 

  39. S. Altindal, S. Karadeniz, N. Tugluoglu, A. Tataroglu, Solid State Electron. 47, 1847 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajender Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Chand, S. Growth and temperature dependent characterization of pulsed laser deposited Ag/n-ZnO/p-Si/Al heterojunction. J Mater Sci: Mater Electron 25, 4531–4537 (2014). https://doi.org/10.1007/s10854-014-2200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2200-z

Keywords

Navigation