Skip to main content
Log in

Mechanical properties of and critical conditions for crack initiation in electronic glass

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the mechanical properties of electronic glass are tested using a combination of the Vickers indentation test and a multiple-loading nanoindentation test to obtain the elastic modulus, Poisson’s ratio and hardness values. The basic mechanical property parameters of the electronic glass and its stress–strain curve are found using atomic force microscopy analysis of the indentation morphology. The critical pressure and depth for crack initiation and the corresponding load and depth can be obtained during vertical loading on the electronic glass. When cracks extend to the surface, the results show that the electronic glass is isotropic. Several loading cycles causes a fatigue effect on the surface of the electronic glass, which decreases its elastic–plastic response. While the loadings are increasing, the elastic–plastic response rates are decreasing bur it rends stability finally. These results can provide a reference and guide for micro machining and surface microstructure machining of electronic glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J.C. Davis, Science 315(5817), 1380–1385 (2007)

    Article  Google Scholar 

  2. D.Z. Zhu, X.Z. Feng, J. Eng. Thermophys-rus. 18(4), 479–483 (1997)

    Google Scholar 

  3. J.H. Jean, C.R. Chang, J. Am. Ceram. Soc. 80(12), 3084–3092 (1997)

    Article  Google Scholar 

  4. K. Kese, M. Tehler, B. Bergm, J. Eur. Ceram. Soc. 26(6), 1003–1011 (2006)

    Article  Google Scholar 

  5. M. Suszynska, M. Szmida, Opt. Appl. 38(1), 245–250 (2008)

    Google Scholar 

  6. M. Arif, M. Rahman, Y.S. Wong, J. Manuf. Process. 13(1), 50–59 (2011)

    Article  Google Scholar 

  7. T. Matsumura, P. Aristimuno, E. Gandarias, J.A. Pedro, J. Mater. Process. Tech. 213, 1523–1531 (2013)

    Article  Google Scholar 

  8. H.T. Liu, Y.Z. Sun, D.B. Shan, C.X. Zhang, Int. J. Adv. Manuf. Technol. 68, 1901–1909 (2013)

    Article  Google Scholar 

  9. C.A. Schuh, Nanoindentation studies of materials. Mater. Today 9(5), 32–40 (2006)

    Article  Google Scholar 

  10. M.F. Doerner, W.D. Nix, J. Mater. Res. 1(4), 601–609 (1986)

    Article  Google Scholar 

  11. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  Google Scholar 

  12. J. W. Yan, H. W. Zhao, T. Kuriyagawa, T. Tamaki, in Proceedings 6th Euspen Int. Conf., Baden bei Wien, Austria, May, 276–279 (2006)

  13. S. Shin, H. Bei, E.P. Georgea, G.M. Pharra, Scr. Mater. 59(10), 1095–1098 (2008)

    Article  Google Scholar 

  14. R. Mahmudi, A.R. Geranmayeh, S.R. Mahmoodi, A. Khalatbari, J. Mater. Sci. Mater. Electron. 18(10), 1071–1078 (2007)

    Article  Google Scholar 

  15. S. Celik, O. Ozturk, E. Coşkun, M. Sarıhan, E. Asikuzun, K. Ozturk, C. Terzioglu, J. Mater. Sci. Mater. Electron. 24(7), 2218–2227 (2013)

    Article  Google Scholar 

  16. W.J. Plumbridge, C.R. Gagg, Effects of strain rate and temperature on the stress–strain response of solder alloys. J. Mater. Sci. Mater. Electron. 10(5–6), 461–468 (1999)

    Article  Google Scholar 

  17. Z.G. Wang, X.T. Zu, L. Yang, F. Gao, J.W. William, J. Mater. Sci. Mater. Electron. 19(8–9), 863–867 (2008)

    Article  Google Scholar 

  18. E. Horváth, G. Hénap, Á.G. Török, Harsányi, J. Mater. Sci. Mater. Electron. 23(12), 2123–2129 (2012)

    Article  Google Scholar 

  19. H.W. Zhao, H.J. Zhao, J.J. Yao, H. Huang, Nanotechnol. Precis. Eng. 3(7), 205–210 (2009)

    Google Scholar 

  20. J.H. Wang, S.Z. Li, X.L. Song, W. Song, H.X. Wang, S.P. Li, Acta. Opt. Sin. 33(9), 243–248 (2013)

    Google Scholar 

  21. M.J. Chen, S. Dong, D. Li, F.H. Zhang, High Technol. Lett. 2, 64–67 (2000)

    Google Scholar 

  22. C.C. Lee, C.C. Lee, Y.W. Yang, J. Mater. Sci. Mater. Electron. 21(8), 787–795 (2010)

    Article  Google Scholar 

  23. M.J. Chen, Q.L. Zhao, S. Dong, D. Li, J. Mater. Process. Tech. 168, 75–82 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (Grant No. 51205087) and the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF.2009017) for providing financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y.Z., Zhang, J. & Liu, H.T. Mechanical properties of and critical conditions for crack initiation in electronic glass. J Mater Sci: Mater Electron 25, 4466–4475 (2014). https://doi.org/10.1007/s10854-014-2189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2189-3

Keywords

Navigation