Skip to main content
Log in

A new tactics to fabricate flexible nanobelts with enhanced magnetic–luminescent bifunction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel magnetic–photoluminescent bifunctional [Fe3O4@Y2O3:Eu3+]/polymethyl methacrylate (PMMA) flexible composite nanobelts were successfully prepared by electrospinning via dispersing Fe3O4@Y2O3:Eu3+ core–shell structured nanoparticles (NPs) into the PMMA matrix. The morphology, structure and properties of the flexible composite nanobelts were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry and fluorescence spectroscopy. The width and thickness of [Fe3O4@Y2O3:Eu3+]/PMMA composite nanobelts are 3.58 ± 0.29 and 1.2 μm, respectively. Fluorescence emission peaks of Eu3+ in [Fe3O4@Y2O3:Eu3+]/PMMA flexible composite nanobelts are observed and assigned to the energy levels transitions of 5D0 → 7F0 (580 nm), 5D0 → 7F1 (533, 586, 592, 599 nm), 5D0 → 7F2 (612 nm) and 5D0 → 7F3 (629 nm) of Eu3+ ions. Compared with Fe3O4/Y2O3:Eu3+/PMMA nanobelts, [Fe3O4@Y2O3:Eu3+]/PMMA flexible composite nanobelts possess much stronger luminescent intensity. The as-prepared flexible composite nanobelts exhibit excellent magnetism and photoluminescent performance. The intensities of magnetism and luminescence of the flexible composite nanobelts can be simultaneously tuned by adjusting the amount of Fe3O4@Y2O3:Eu3+ NPs introduced into the nanobelts. The high performance [Fe3O4@Y2O3:Eu3+]/PMMA flexible composite nanobelts have potential applications in the fields of cell separation, magnetic resonance imaging, drug deliver and future nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.Y. Zhang, C.L. Shao, X.H. Li, L. Zhang, H.M. Xue, C.H. Wnag, Y.C. Liu, J. Phys. Chem. C 114(17), 7920–7925 (2010)

    Article  Google Scholar 

  2. Y.C. Chou, C.L. Shao, X.H. Li, C.Y. Su, H.C. Xu, M.Y. Zhang, P. Zhang, X. Zhang, Y.C. Liu, Appl. Surf. Sci. Part B 285, 509–516 (2013)

    Article  Google Scholar 

  3. L. Nicolas, H. Anne, S. Guy, T.M. Linda, R. RenéM, P. Ana-Maria, ACS Appl. Mater. Interfaces 5, 10090–10097 (2013)

    Article  Google Scholar 

  4. K. Akash, S.K. Sang, J. Am. Ceram. Soc. 95(2), 553–556 (2012)

    Article  Google Scholar 

  5. X.F. Lu, W.J. Zhang, C. Wang, T.C. Wen, Y. Wei, Prog. Polym. Sci. 36, 671–712 (2011)

    Article  Google Scholar 

  6. Z. Eduard, C. Daehwan, L.J. Yong, Phys. Fluids 23(073102), 1–3 (2011)

    Google Scholar 

  7. W.Y. Liu, J.C. Wei, Y.W. Chen, P. Huo, Y. Wei, ACS Appl. Mater. Interfaces 5, 680–685 (2013)

    Article  Google Scholar 

  8. B.S. Kim, I.S. Kim, Polym. Rev. 51, 235–238 (2011)

    Article  Google Scholar 

  9. B. Cedric, G. Thierry, A. Antigoni, ACS Nano 5(11), 8488–8505 (2011)

    Article  Google Scholar 

  10. M. Thandar, G. Ray, E. Hergen, J. Phys. Chem. C 116, 1687–1693 (2012)

    Google Scholar 

  11. A.L. Morel, S.I. Nikitenko, K. Gionnet, A. Wattiaux, M. Simonoff, ACS Nano 2(5), 847–856 (2008)

    Article  Google Scholar 

  12. M.J. Li, Z.F. Chen, V.W.W. Yam, Y.B. Zu, ACS Nano 2(5), 905–912 (2008)

    Article  Google Scholar 

  13. J.H. Wang, S.R. Zheng, Y. Shao, J.L. Liu, Z.Y. Xu, D.Q. Zhu, J. Colloid Interface Sci 349, 293–299 (2010)

    Article  Google Scholar 

  14. M. Runowski, T. Gizyb, S. Lis, J. Rare Earths 29(12), 1117–1121 (2011)

    Article  Google Scholar 

  15. Z.Y. Ma, D. Dosi, N. Mikaela, J.G. Shirley, D.H. Bruce, M.K. Ian, J. Mater. Chem. 19, 4695–4700 (2009)

    Article  Google Scholar 

  16. Q. Wang, X.W. Yang, L.X. Yu, H. Yang, J. Alloys Compd. 509, 9098–9104 (2011)

    Article  Google Scholar 

  17. D.M. Liu, L.Z. Tong, J.H. Shi, X.W. Yang, H. Yang, J. Mater. Sci. Mater. Electron. 23, 464–467 (2012)

    Article  Google Scholar 

  18. Y. Xu, A. Karmakar, D.Y. Wang, M. Mahmood, F. Watanabe, Y.B. Zhang, A. Fejleh, P. Fejleh, Z.R. Li, G. Kannarpady, S. Ali, A. Biris, J. Phys. Chem. C 114, 5020–5026 (2010)

    Article  Google Scholar 

  19. Z.S. Yang, Adv. Mater. Lett. 2(3), 195–199 (2011)

    Google Scholar 

  20. H.T. Wong, H.L. Chan, J.H. Hao, Appl. Phys. Lett. 95, 510–512 (2009)

    Article  Google Scholar 

  21. M. Runowski, T. Grzyb, S. Lis, J. Nanopart. Res. 14, 1188–1195 (2012)

    Article  Google Scholar 

  22. P. Lu, J.L. Zhang, Y.L. Liu, D.H. Sun, G.X. Liu, G.Y. Hong, N.J. Zuan, Talanta 83, 450–457 (2010)

    Article  Google Scholar 

  23. H.X. Peng, G.X. Liu, X.T. Dong, J.X. Wang, J. Xu, W.S. Yu, J. Alloys Compd. 509, 6930–6934 (2011)

    Article  Google Scholar 

  24. W. Wang, M. Zou, K.Z. Chen, Chem. Commun. 46, 5100–5102 (2010)

    Article  Google Scholar 

  25. J. Feng, S.Y. Song, R.P. Deng, W.Q. Fan, H.J. Zhang, Langmuir 26, 3596–3600 (2010)

    Article  Google Scholar 

  26. L.Z. Tong, J.H. Shi, D.M. Liu, Q.H. Li, X.Z. Ren, H. Yang, J. Phys. Chem. C 116, 7153–7157 (2012)

    Article  Google Scholar 

  27. X.G. Yu, Y. Shan, G.C. Li, K.Z. Chen, J. Mater. Chem. 21, 8104–8108 (2011)

    Article  Google Scholar 

  28. H.G. Wang, Y.X. Li, L. Sun, Y. Li, W. Wang, S. Wang, S.F. Xu, Q.B. Yang, J. Colloid Interface Sci. 350, 396–401 (2010)

    Article  Google Scholar 

  29. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Nanopart. Res. 14, 1203–1209 (2012)

    Article  Google Scholar 

  30. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Opt. Mater. 35, 526–530 (2013)

    Article  Google Scholar 

  31. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Mater. Chem. 22, 14438–14442 (2012)

    Article  Google Scholar 

  32. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, ChemPlusChem. 79, 290–297 (2014)

  33. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Nanoscale 6(5), 2945–2952 (2014)

    Article  Google Scholar 

  34. G.Q. Gai, L.Y. Wang, X.T. Dong, C.M. Zheng, W.S. Yu, X.J. Wang, X.F. Xiao, J. Nanopart. Res. 15(4), 1539–1547 (2013)

    Article  Google Scholar 

  35. Y.Y. Zheng, X.B. Wang, L. Shang, C.R. Li, C. Cui, W.J. Dong, W.H. Tang, B.Y. Chen, Mater. Charact. 61, 489–492 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402, 20060504), the Science and Technology Research Project of the Education Department of Jilin Province during the eleventh five-year plan period (Under Grant No. 2010JYT01), Key Research Project of Science and Technology of Ministry of Education of China (Grant No. 207026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxian Wang or Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Wang, J., Dong, X. et al. A new tactics to fabricate flexible nanobelts with enhanced magnetic–luminescent bifunction. J Mater Sci: Mater Electron 25, 2561–2568 (2014). https://doi.org/10.1007/s10854-014-1910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1910-6

Keywords

Navigation