Skip to main content
Log in

Preparation and ac electrical characterizations of Cd doped SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) of the Sn1−xCdxO2 (0.0 ≤ x ≤ 0.04) were synthesized through soft chemistry method. These NPs were characterized for structural, morphological and electrical properties by X-ray diffraction, High resolution transmission electron microscopy and dielectric spectroscopy techniques respectively. Structural analysis confirms that all the NPs are having single phase rutile tetragonal structure. The NPs are of spherical shape and average size of these is found to decrease with Cd doping. Dielectric permittivity and AC conductivity of all the NPs were evaluated as a function of frequency and composition at room temperature. The frequency response of εr, εi, tan δ and σ ac show that the dispersion is due to the interfacial polarization and these parameters decrease with doping of Cd in the SnO2 matrix. The possible correlation between observed dielectric properties and size of NPs, and hence disorder in the system are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.L. Hartnagel, Semiconducting Transparent Thin Films (Institute of Physics Publishing, Bristol, 1995)

    Google Scholar 

  2. Z. Ying, Q. Wan, Z.T. Song, S.L. Feng, Nanotechnology 15, 1682 (2004)

    Article  Google Scholar 

  3. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)

    Article  Google Scholar 

  4. Z. Peng, Z. Shi, M. Liu, Chem. Commun. 21, 25 (2000)

    Google Scholar 

  5. A. Aoki, H. Sasakura, Japan. J. Appl. Phys. 9, 582 (1970)

    Article  Google Scholar 

  6. C.D. Hodgman, Handbook of Chemistry and Physics (Chemical Rubber, Cleveland, 1961)

    Google Scholar 

  7. N. Barsan, U. Weimar, J. Phys, Conden. Mater. 15, 813 (2003)

    Article  Google Scholar 

  8. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)

    Article  Google Scholar 

  9. Z.R. Dai, J.L. Gole, J.D. Stout, Z.L. Wang, J. Phys. Chem. B 106, 1274 (2002)

    Article  Google Scholar 

  10. Y. Chen, X. Cui, K. Zhang, D. Pan, S. Zhang, B. Wang, J. Hou, Chem. Phys. Lett. 369, 16 (2003)

    Article  Google Scholar 

  11. Z.R. Dai, Z.W. Pan, Z.L. Wang, Solid State Commun. 118, 351 (2001)

    Article  Google Scholar 

  12. Y. Liu, C. Zheng, W. Wang, C. Yin, G. Wang, Adv. Mater. 13, 1883 (2001)

    Article  Google Scholar 

  13. D. Zhang, L. Sun, J. Yin, C. Yan, Adv. Mater. 15, 1022 (2003)

    Article  Google Scholar 

  14. Y. Liu, J. Dong, M. Liu, Adv. Mater. 16, 353 (2004)

    Article  Google Scholar 

  15. Y. Zhang, K. Yu, G. Li, D. Peng, Q. Zhang, F. Xu, W. Bai, S. Ouyang, Z. Zhu, Mater. Lett. 60, 3109 (2006)

    Article  Google Scholar 

  16. C.A. Vincent, J. Electrochem. Soc. 119, 515 (1972)

    Article  Google Scholar 

  17. A. Rothschild, Y. Komen, J. Appl. Phys. 95, 6374 (2004)

    Article  Google Scholar 

  18. H. Toyosaki, M. Kawasaki, Y. Tokura, Appl. Phys. Lett. 93, 132109 (2008)

    Article  Google Scholar 

  19. A. R Babar, S.S Shinde, A.V. Moholkar, K.Y. Rajpure, J. Alloy. Compd. 505,743 (2010)

    Google Scholar 

  20. R. Rai, Adv. Mater. Lett. 1, 55 (2010)

    Article  Google Scholar 

  21. C.G. Whinfrey, D.W. Eckort, A. Tauber, J. Am. Chem. Soc. 82, 2695 (1960)

    Article  Google Scholar 

  22. H.R. Ricardo, P. Hidalgo, H.E.M. Perez, F.J. Ramirez, D. Gouvea, Sens. Actuators B 133, 263 (2008)

    Article  Google Scholar 

  23. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading, MA, 1978)

  24. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974)

    Google Scholar 

  25. S. Gnanam, V. Rajendran, J. Sol-Gel. Sci. Technol. 56, 128 (2010)

    Article  Google Scholar 

  26. P. Boguslawski, E.L. Briggs, J. Bernholc, Phys. Rev. B 51, 17255 (1995)

    Article  Google Scholar 

  27. P. Perlin, T. Suski, H. Teisseyre, Phys. Rev. Lett. 75, 296 (1995)

    Article  Google Scholar 

  28. X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie, Adv. Mater. 17, 1661 (2005)

    Article  Google Scholar 

  29. J.G. Han, Z.Y. Zhu, S. Ray, A.K. Azad, W.L. Zhang, M.X. He, S.H. Li, Y.P. Zhao, Appl. Phys. Lett. 89, 031107 (2006)

    Article  Google Scholar 

  30. S.M. Zhou, Y.S. Feng, L.D. Zhang, Chem. Phys. Lett. 369, 610 (2003)

    Article  Google Scholar 

  31. B. Song, G. Wang, J.K. Jian, M. Lei, H.Q. Bao, X.L. Chen, J. Alloys Compd. 460, 31 (2008)

    Article  Google Scholar 

  32. J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley, Canada, 1987)

    Google Scholar 

  33. F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119 (2004)

    Article  Google Scholar 

  34. J.M. Themlin, R. Sporken, J. Darville, J.M. Gilles, Phys. Rev. B 42, 11914 (1990)

    Article  Google Scholar 

  35. C.L. Pang, S.A. Haycock, H. Raza, P.J. Moller, G. Thormton, Phys. Rev. B 62, R7775 (2000)

    Article  Google Scholar 

  36. M.A. Maki, T.T. Rantala, Phys. Rev. B 65, 245428 (2002)

    Article  Google Scholar 

  37. K.N. Yu, Y. Xiong, Y. Liu, C. Xiong, Phys. Rev. B 55, 26669 (1997)

    Google Scholar 

  38. N. Lavanya, S. Radhakrishnan, C. Sekar, Biosens. Bioelectron. 36, 41 (2012)

    Article  Google Scholar 

  39. D. Mardare, G.I. Rusu, J. Optoelectron. Adv. Mater. 6, 333 (2004)

    Google Scholar 

  40. G. Belmonte, V. Kytin, T. Dittrich, J. Bisquert, J. Appl. Phys. 94, 815 (2003)

    Google Scholar 

  41. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory: Experiments and Applications (Wiley, New York, 2005)

    Book  Google Scholar 

  42. A. Chandran, S. Samuel, J. Koshy, K.C. George, J. Appl. Phys. 109, 084314 (2011)

    Article  Google Scholar 

  43. S. Tewari, A. Bhattacharjee, P.P. Sahay, J. Mater. Sci. 44, 534 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

F. A. M would like thank University Grants Commission (UGC) for awarding the UGC-Dr. D. S. Kothari Postdoctoral Fellowship. We are also thankful to the King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia for providing some experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feroz A. Mir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mir, F.A., Batoo, K.M., Chatterjee, I. et al. Preparation and ac electrical characterizations of Cd doped SnO2 nanoparticles. J Mater Sci: Mater Electron 25, 1564–1570 (2014). https://doi.org/10.1007/s10854-014-1769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1769-6

Keywords

Navigation