Skip to main content
Log in

Dielectrophoretic trapping of selenium nanorods for use in device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dielectrophoretic alignment of the Selenium (Se) nanorods is reported for electrical characterization and possible applications as micro/nano devices. Selenium nanorods were successfully synthesized using a reverse microemulsion process. The produced material was investigated structurally using X-ray diffraction and transmission electron microscope. Suspensions of the Se powder in the concentration of 0.1 (g/l) were prepared in pure ethanol. Interdigitated platinum electrodes were employed for manipulation of suspended materials in the fluid. When Se particles were exposed to the platinum electrodes in two frequencies of 10 and 100 kHz, dielectrophoretic force captured suspended particles onto the interdigitated micro-electrode array. The trapped Se nanorods were aligned along the electric field lines and bridged the electrode gaps. Dielectrophoretic entrapment of Se nanorods on microelectrode was also detected by impedance measurements. The device was characterized and can potentially be used as a nanodevice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.V.N.T. Kuchibhatla, S. Karakoti, D. Bera, S. Seal, One dimensional nanostructured materials. Prog. Mater. Sci. 52(5), 699–913 (2007)

    Article  CAS  Google Scholar 

  2. S. Evoy, M. Riegelman, N. Naguib, H. Ye, P. Jaroenapibal, D.E. Luzzi, Y. Gogotsi, dielectrophoretic assembly of carbon nanofiber nanoelectromechanical devices. IEEE transactions on nanotechnology, 4(5) (2005), 570–575

  3. F. Patolsky, C.M. Lieber, Nanowire nanosensors. Mater. Today 8(4), 20–28 (2005)

    Article  CAS  Google Scholar 

  4. L. Dai, A. Patil, X. Gong, Z. Guo, L. Liu, Y. Liu, D. Zhu, Aligned Nanotubes. Chem. Phys. Chem. 4, 1150–1169 (2003)

    Article  CAS  Google Scholar 

  5. H. Morgan, N.G. Green, AC Electrokinetic: Colloids and Nanoparticles, Research Studies Press Ltd. Baldock, Hertfordshire, England., 2002

  6. M. P. Hughes, Nanoelectromechanics in engineering and biology, CRC PRESS, 2–15, Boca Raton, florida, USA, 2003

  7. M.P. Hughes, AC electrokinetics: applications for nanotechnology. Nanotechnology 11(2), 124 (2000)

    Article  CAS  Google Scholar 

  8. L. Qi, W. Shen, Selective synthesis of single-crystalline selenium nanobelts and nanowires in micellar, solutions of nonionic surfactants (14) (2005), 6161–6164

  9. P. Liu, Y. Ma, W. Cai, Z. Wang, J. Wang, L. Qi, D. Chen, Photoconductivity of single-crystalline selenium nanotubes. Nanotechnology 18, 205704 (2007)

    Article  Google Scholar 

  10. B. X. Gao, J. Zhang, L. Zhang, Hollow sphere selenium nanoparticles: Their In-vitro anti hydroxyl radical effect, Advanced Materials (4) (2002), 2000–2003

  11. S. Zhang, J. Zhang, H. Wang, H. Chen, Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater. Lett. 58, 2590–2594 (2004)

    Article  CAS  Google Scholar 

  12. M. Quintana, E. Haro-poniatowski, J. Morales, N. Batina, Synthesis of selenium nanoparticles by pulsed laser ablation. Appl. Surf. Sci. 195(1–4), 195 (2002)

    Google Scholar 

  13. X. Cao, Y. Xie, L. Li, Spontaneous organization of three-dimensionally packed trigonal selenium microspheres into large-area nanowire networks. Adv. Mater. 15, 1914–1918 (2003)

    Article  CAS  Google Scholar 

  14. Q. Lu, F. Gao, S. Komarneni, Cellulose-directed growth of selenium nanobelts in solution 30, 159–163 (2006)

    Google Scholar 

  15. B.T. Mayers, K. Liu, D. Sunderland, Y. Xia, Sonochemical synthesis of trigonal selenium nanowires. Chem. Mater. 15(20), 3852–3858 (2003)

    Article  CAS  Google Scholar 

  16. S.K. Haram, A.R. Mahadeshwar, S.G. Dixit, Synthesis and characterization of copper sulfide nanoparticles in triton-x 100 water-in-oil microemulsions. J. Phys. Chem 100(14), 5868–5873 (1996)

    Article  CAS  Google Scholar 

  17. C.C. Chang, J.Y. Kim, P.N. Kumta, Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide. J. Electrochem. Soc. 147(5), 1722–1729 (2000)

    Article  CAS  Google Scholar 

  18. C. Lu, H. Wang, Reverse-microemulsion preparation and characterization of ultrafine orthorhombic LiMnO 2 powders for lithium-ion secondary batteries. J. Eur. Ceram. Soc. 24, 717–723 (2004)

    Article  Google Scholar 

  19. Y.K. Seo, S. Kumar, G.H. Kim, Dielectrophoretic alignment of ZnO nanoparticles in pre-patterned nanogap electrodes, 9th IEEE Conference on Nanotechnology (2009) 264–266

  20. S. Wang, M.C.P. Zhang, X. Majidi, E. Nedelec, K. Gates, B.D. Nantes et al., Electrokinetic assembly of selenium and silver nanowires into macroscopic fibers. ACS Nano 4(5), 2607–2614 (2010)

    Article  CAS  Google Scholar 

  21. S.R. Mahmoodi, M. Bayati, S. Hosseinirad, A. Foroumadi, K. Gilani, S.M. Rezayat, AC electrokinetic manipulation of selenium nanoparticles for potential nanosensor applications. Mater. Res. Bull. 48(3), 1262–1267 (2013)

    Article  CAS  Google Scholar 

  22. J.E. Hoffmann, M.G. King, Selenium and Selenium Compounds (John Wiley and Sons, Inc., Kirk-Othmer Encyclopedia of Chemical Technology, 2001)

    Google Scholar 

  23. M.Z. Liu, S.Y. Zhang, Y.H. Shen, M.L. Zhang, Selenium nanoparticles prepared from reverse microemulsion process. Chin. Chem. Lett. 15(10), 1249 (2004)

    CAS  Google Scholar 

  24. R. Pethig, Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2), 1–35 (2010)

    Google Scholar 

  25. S.K. Mohanty, S.K. Ravula, K.L. Engisch, A.B. Frazier, in A micro system using dielectrophoresis and electrical impedance spectroscopy for cell manipulation and analysis. 12th International Conference on Transducers, Solid-state Sensors, Actuators and Microsystems, vol. 2 (2003), pp. 1055–1058

  26. L. Yang, Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta 74(5), 1621–1629 (2008)

    Article  CAS  Google Scholar 

  27. M. Varshney, Y. Li, Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosens. Bioelectron. 24(10), 2951–2960 (2009)

    Article  CAS  Google Scholar 

  28. Z. Zou, S. Member, S. Lee, C.H. Ahn, A polymer microfluidic chip with interdigitated electrodes arrays for simultaneous dielectrophoretic manipulation and impedimetric detection of microparticles. Sens. J. IEEE 8(5), 527–535 (2008)

    Article  CAS  Google Scholar 

  29. D.W.E. Allsopp, L.R. Milner, A.P. Brown, W.B. Betts, Impedance technique for measuring dielectrophoretic collection of microbiological particles. J. Phys. D Appl. Phys. 32, 1066–1074 (1999)

    Article  CAS  Google Scholar 

  30. J. Suehiro, R. Yatsunami, R. Hamada, M. Hara, Quantitative estimation of biological cell concentration suspended in aqueous medium by using dielectrophoretic impedance measurement method. J. Phys. D Appl. Phys. 32(21), 2814–2820 (1999)

    Article  CAS  Google Scholar 

  31. A. Qin, Z. Li, R. Yang, Y. Gu, Y. Liu, Z. Lin, Rapid photoresponse of single-crystalline selenium nanobelts. Solid State Commun. 148, 145–147 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to Tehran University of Medical Sciences, Iran for providing the financial supports by the Grant (code 89-01-87-10393).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzieh Bayati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoodi, S.R., Bayati, M., Rad, S.H. et al. Dielectrophoretic trapping of selenium nanorods for use in device applications. J Mater Sci: Mater Electron 24, 4554–4559 (2013). https://doi.org/10.1007/s10854-013-1441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1441-6

Keywords

Navigation