Skip to main content
Log in

Effect of the substrate temperature on the structural, optical and electrical properties of spray-deposited CdS:B films

Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Boron doped CdS films have been deposited by spray pyrolysis method onto glass substrate temperature in the range of 350–450 °C. And the effect of substrate temperature (T s) on the structural, electrical and optical properties of the films were studied. The structural properties of boron doped CdS films have been investigated by (XRD) X-ray diffraction techniques. The X-ray diffraction spectra showed that boron doped CdS films are polycrystalline and have a hexagonal (wurtzite) structure. By using SEM analysis, the surface morphology of the films was observed as an effect of the variation of substrate temperature. The substrate temperature is directly related with the shift detected in the band gap values derived from optical of parameters and the direct band gap values were found to be in the region of 2.08–2.44 eV. The electrical studies showed that the film deposited at the substrate temperature 400 °C had high carrier concentration and Hall mobility and minimum resistivity. This resistivity value decreased with increase in temperature up to 400 °C indicating the semiconducting nature of B- doped CdS films. The lattice parameter, grain size, microstrain and dislocation densities were calculated and correlated with the substrate temperature (T s ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.C. KlicK, Phys. Rev. 89, 274 (1953)

    Article  CAS  Google Scholar 

  2. D.S. Chuu, C.M. Dai, Phys. Rev. B 45, 11805 (1992)

    Article  CAS  Google Scholar 

  3. F.R. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Nature 461, 629 (2009)

    Article  CAS  Google Scholar 

  4. R. Krahne, G. Chilla, C. Schuller, L. Carbone, S. Kudera, G. Mannarini, L. Manna, D. Heitmann, R. Cingolani, Nano Lett. 6, 478 (2006)

    Article  CAS  Google Scholar 

  5. S. Sapra, D.D. Sarma, Phys. Rev. B 69, 125304 (2004)

    Article  Google Scholar 

  6. R.R. Arya, P.M. Sarro, J.J. Loferski, Appl. Phys. Lett. 41, 355 (1982)

    Article  CAS  Google Scholar 

  7. C. Vossa, S. Subramaniana, C.-H. Chang, J. Appl. Phys. 96, 5819 (2004)

    Article  Google Scholar 

  8. K.D. Dobson, I. Visoly-Fisher, G. Hodes, D. Cahen, Sol. Energy Mater. Sol. Cells 62, 295 (2000)

    Article  CAS  Google Scholar 

  9. E.I. Schropp, M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modelling, Materials and Device Technology (Kluwer Academic Pub, Boston and London, 1998)

    Book  Google Scholar 

  10. H. Zhang, X. Ma, D. Yang, Mater. Lett. 58, 5 (2003)

    Article  Google Scholar 

  11. K.S. Ramaiha, R.D. Pilkington, A.E. Hill, R.D. Tomlinson, A.K. Bhatnagar, Mater. Chem. Phys. 68, 22 (2001)

    Article  Google Scholar 

  12. X. Wu, J. Keane, R. Dhere, D. Dehart, D. Albin, A. Duda, T. Gessert, S. Asher, D. Levi, P. Sheldon, in Proceedings of the 17th European Photovoltaic Solar Energy Conference, (Munich, Germany, 2001), p. 995

  13. M. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Prog. Photovolt: Res. Appl. 7, 311 (1999)

    Article  CAS  Google Scholar 

  14. Y. Hagiwara, T. Nakada, A. Kunioka, Sol. Energy Mater. Sol. Cells 67, 267 (2001)

    Article  CAS  Google Scholar 

  15. J. Hupkes, B. Rech, O. Kluth, T. Repmann, B. Zwaygardt, J. Muller, R. Drese, M. Wuttig, Sol. Energy Mater. Sol. Cells 90, 3054 (2006)

    Article  Google Scholar 

  16. J. Hupkes, B. Rech, S. Calnan, O. Kluth, U. Zastrow, H. Siekmann, M. Wuttig, Thin Solid Films 502, 286 (2006)

    Article  Google Scholar 

  17. K. Ellmer, J. Phys. D Appl. Phys. 34, 3097 (2001)

    Article  CAS  Google Scholar 

  18. B.N. Pawar, S.R. Jadkar, M.G. Takwale, J. Phys. Chem. Solids 66, 1779 (2005)

    Article  CAS  Google Scholar 

  19. J.H. Lee, J.S. Yi, K.J. Yang, J.H. Park, R.D. Oh, Thin Solid Films 431–432, 344 (2003)

    Article  Google Scholar 

  20. J. Lee, Thin Solid Films 451–452, 170 (2004)

    Article  Google Scholar 

  21. M. Altosaar, K. Ernits, J. Krustok, T. Varema, J. Raudoja, E. Mellikov, Thin Solid Films 480–481, 147 (2005)

    Article  Google Scholar 

  22. M. Ray, P. Chattopadhyay, Indian J. Pure Appl. Phys. 35(5), 349 (1997)

    CAS  Google Scholar 

  23. L.J. Van der Pauw, Philips Res. Rep. 13, 1 (1958)

    Google Scholar 

  24. T.L. Chu, S.S. Chu, N. Schultz, C. Wang, C.Q. Wu, J. Electrochem. Soc. 139, 2443 (1992)

    Article  CAS  Google Scholar 

  25. M. Oztas, Chin. Phys. Lett. 25, 4090 (2008)

    Article  CAS  Google Scholar 

  26. K. Reichelt, X. Jiang, Thin Solid Films 191, 91 (1990)

    Article  Google Scholar 

  27. T.E. Jenkins, Semiconductor Science Growth and Characterization Techniques (Prentice-Hall, New York, 1995)

    Google Scholar 

  28. R. Sathyamoorthy, S. Chandramohan, P. Sudhagar, D. Kanjilal, D. Kabiraj, K. Asokan, Sol. Energy Mater. Sol. Cells 90, 2297 (2006)

    Article  CAS  Google Scholar 

  29. M. Oztas, M. Bedir, R. Kayalı, F. Aksoy, Mater. Sci. Eng. B 131, 94 (2006)

    Article  Google Scholar 

  30. X. Xiu, Y. Cao, Z.Y. Pang, S. Han, J. Mater. Sci. Technol. 25(6), 785 (2009)

    CAS  Google Scholar 

  31. M. Öztas, M. Bedir, Thin Solid Films 516, 1703–1709 (2008)

    Article  Google Scholar 

  32. I.A. Ovid’ko, Rev. Adv. Mater. Sci. 1, 61 (2000)

    Google Scholar 

  33. W.D. Nix, Mec. Proper. Thin Films, Nadai Medal Lecture (ASME Congress, New York, 2001)

    Google Scholar 

  34. I.A. Ovid’ko, Rev. Adv. Mater. Sci. 1, 61 (2000)

    Google Scholar 

  35. C.F. Rong, G.D. Watkins, Phys. Rev. Lett. 58, 1486 (1989)

    Article  Google Scholar 

  36. A. Ashor, N. El-Kadry, M.R. Ebid, M. Farghal, A.A. Ramadan, Thin Solid Films 279, 242 (1996)

    Article  Google Scholar 

  37. N. El-Kadry, M.F. Ahmed, K.A. Hady, Thin Solid Films 274, 120 (1996)

    Article  CAS  Google Scholar 

  38. J. Hu, R.G. Gordon, J. Appl. Phys. 72, 5381 (1992)

    Article  CAS  Google Scholar 

  39. M. Oztas, M. Bedir, P. J. Appl. Sci. 1(2), 214 (2001)

    Google Scholar 

  40. A. Ashour, Turk. J. Phys. 27, 551 (2003)

    CAS  Google Scholar 

  41. V. Bilgin, S. Kose, F. Atay, I. Akyuz, Mater. Chem. Phys. 94, 103 (2005)

    Article  CAS  Google Scholar 

  42. H. Kim, J.S. Horwitz, G.P. Kushto, S.B. Qadri, Z.H. Kafafi, D.B. Chrisey, Appl. Phys. Lett. 78, 1050 (2001)

    Article  CAS  Google Scholar 

  43. H. Kim, J.S. Horwitz, G. Kushto, A. Pique, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, J. Appl. Phys. 88, 6021 (2000)

    Article  CAS  Google Scholar 

  44. X.Q. Gu, L.P. Zhu, Z.Z. Ye, Q.B. Ma, H.P. He, Y.Z. Zhang, B.H. Zhao, Sol. Energy Mater. Sol. Cells 92, 343 (2008)

    Article  CAS  Google Scholar 

  45. Q.B. Ma, Z.Z. Ye, H.P. He, L.P. Zhu, W.C. Liu, Y.F. Yang, L. Gong, J.Y. Huang, Y.Z. Zhang, B.H. Zhao, J. Phys. D Appl. Phys. 41, 055302 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Bedir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedir, M., Öztaş, M. & Kara, H. Effect of the substrate temperature on the structural, optical and electrical properties of spray-deposited CdS:B films. J Mater Sci: Mater Electron 24, 499–506 (2013). https://doi.org/10.1007/s10854-012-0904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0904-5

Keywords

Navigation