Skip to main content

Advertisement

Log in

Stress dependent properties of Ga-doped ZnO thin films prepared by magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ga doped ZnO films have been prepared by radio frequency magnetron sputtering at room temperature. The (002) preferential orientation is observed for all the films. In plane lattice parameters of the films are obtained by X-ray diffraction θ–2θ scan with the samples tilted 61.63°. Intrinsic compressive stress is observed parallel to the film surface, varying from 410 to 3,000 MPa. Electrical properties of the films show a great dependence on the stress. Carrier concentration and mobility are both improved as the intrinsic compressive stress is reduced which is greatly affected by adjusting the deposition pressure. Therefore, the electrical resistivity is optimized to be 1.8 × 10−3 Ω·cm for the film prepared at 8.0 Pa. In addition, the optical analysis reveals that the transmittance of the films is higher than 90 %. The band gap of the films increases from 3.11 to 3.38 eV with decreasing the stress due to the increase in the carrier concentration, which is related to Burstein–Moss effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.F. Wager, Science 300, 1245 (2003)

    Article  CAS  Google Scholar 

  2. O. Nakagawara, Y. Kishimoto, H. Seto, Y. Koshido, Y. Yoshino, T. Makino, Appl. Phys. Lett. 89, 91904 (2006)

    Article  Google Scholar 

  3. B. Houng, C.J. Huang, Surf. Coat. Technol. 201, 3188 (2006)

    Article  CAS  Google Scholar 

  4. H. Kim, J.S. Horwitz, S.B. Qadri, D.B. Chrisey, Thin Solid Films 107, 420 (2002)

    Google Scholar 

  5. T. Yamada, A. Miyake, S. Kishimoto, H. Makino, N. Yamamoto, T. Yamamoto, Appl. Phys. Lett. 91, 51915 (2007)

    Article  Google Scholar 

  6. K. Lin, Y. Chen, J. Sol–Gel Sci. Technol. 215, 51 (2009)

    Google Scholar 

  7. S. Park, T. Ikegami, K. Ebihara, Thin Solid Films 513, 90 (2006)

    Article  CAS  Google Scholar 

  8. H. Hsu, C. Yang, C. Huang, C. Hsu, J. Mater. Sci.: Mater. Electron. (2012). doi: 10.1007/s10854-012-0735-4

  9. H.H. Shin, Y.H. Joung, S.J. Kang, J. Mater. Sci.: Mater. Electron. 20, 704(2009)

  10. B. Lee, T. Kim, S. Jeong, J. Phys. D Appl. Phys. 39, 957 (2006)

    Article  CAS  Google Scholar 

  11. V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M.E.V. Costa, R. Martins, Thin Solid Films 427, 401 (2003)

    Article  CAS  Google Scholar 

  12. Q. Ma, Z. Ye, H. He, J. Wang, Vacuum 82, 9 (2008)

    Article  Google Scholar 

  13. M. Birkholz, B. Selle, F. Fenske, W. Fuhs, Phys. Rev. B: Condens. Matter 68, 205414 (2003)

    Article  Google Scholar 

  14. L. Qiao, X. Bi, Appl. Phys. Lett. 92, 62912 (2008)

    Article  Google Scholar 

  15. E. Chason, B.W. Sheldon, L.B. Freund, J.A. Floro, S.J. Hearne, Phys. Rev. Lett. 88, 156103 (2002)

    Article  CAS  Google Scholar 

  16. R. Cebulla, R. Wendt, K. Ellmer, J. Appl. Phys. 83, 1087 (1998)

    Article  CAS  Google Scholar 

  17. K. Ellmer, J. Phys. D Appl. Phys. 33, R17 (2000)

    Article  CAS  Google Scholar 

  18. O. Kluth, G. Schope, B. Rech, R. Menner, M. Oertel, K. Orgassa, H.W. Schock, Thin Solid Films 502, 311 (2006)

    Article  CAS  Google Scholar 

  19. J. Lee, J. Electroceram. 23, 521 (2009)

    Google Scholar 

  20. C. Agashe, O. Kluth, J. Kupkes, U. Zastrow, B. Rech, J. Appl. Phys. 95, 1911 (2004)

    Article  CAS  Google Scholar 

  21. Y. Igasaki, H. Kanma, Appl. Surf. Sci. 169–170, 508 (2001)

    Article  Google Scholar 

  22. R.J.D. Tilley, Crystals and crystal structures (John Wiley & Sons, Chichester, 2006), p. 113

    Google Scholar 

  23. G. Hu, X. Cai, Y. Rong, Fundamentals of materials science (Shanghai Jiao Tong University Press, Shanghai, 2007), p. 26

    Google Scholar 

  24. A. Segmuller, M. Murakami, R. Rosenberg, Analytical techniques for thin films (Academic, Boston, 1988), p. 143

    Google Scholar 

  25. D.M. Mattox, J. Vac. Sci. Technol., A 7, 1105 (1989)

    Article  CAS  Google Scholar 

  26. C. Jacoboni, Theory of electron transport in semiconductors (Springer, Berlin, 2010), p. 140

    Book  Google Scholar 

  27. P.Y. Yu, M. Cardona, Fundamentals of semiconductors (Springer, Berlin, 2010), p. 208

    Book  Google Scholar 

  28. D.H. Zhang, H.L. Ma, Appl. Phys. A 62, 487 (1996)

    Article  Google Scholar 

  29. M. De Graef, M.E. McHenry, Structure of materials (Cambridge University Press, Cambridge, 2007), p. 619

    Google Scholar 

  30. Y. Igasaki, H. Saito, J. Appl. Phys. 70, 3613 (1991)

    Article  CAS  Google Scholar 

  31. S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana, Prog. Mater Sci. 54, 89 (2009)

    Article  CAS  Google Scholar 

  32. X. Yu, J. Ma, F. Ji, Y. Wang, C. Cheng, H. Ma, Appl. Surf. Sci. 245, 310 (2005)

    Article  CAS  Google Scholar 

  33. L. Hao, X. Diao, H. Xu, B. Gu, T. Wang, Appl. Surf. Sci. 254, 3504 (2008)

    Article  CAS  Google Scholar 

  34. C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, F. Williams, A.K. Pradhan, Semicond. Sci. Technol. 23, 85019 (2008)

    Article  Google Scholar 

  35. L. Chen, X. Bi, Vacuum 82, 1216 (2008)

    Article  CAS  Google Scholar 

  36. T.J, G.R, V.A, Physica Status Solidi A15, 627(1966)

  37. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  CAS  Google Scholar 

  38. M. Snure, A. Tiwari, J. Appl. Phys. 101, 124912 (2007)

    Article  Google Scholar 

  39. J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, et al., J. Appl. Phys. 101, 83705(2007)

Download references

Acknowledgments

This work was supported by the Science Fund for Creative Research Groups (50921003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofang Bi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Huang, Q. & Bi, X. Stress dependent properties of Ga-doped ZnO thin films prepared by magnetron sputtering. J Mater Sci: Mater Electron 24, 79–84 (2013). https://doi.org/10.1007/s10854-012-0862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0862-y

Keywords

Navigation