Skip to main content
Log in

Piezoelectric formation mechanisms and phase transformation of poly(vinylidene fluoride)/graphite nanosheets nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The β-phase of poly(vinylidene fluoride) (PVDF) is of great technical importance because of its high dielectric constant and piezoelectric effect. In this work, we exfoliated and dispersed natural graphite to prepare 2D-graphite nanosheets (GNS) and prepared PVDF/GNS nanocomposites with different GNS volumes from 1 to 7 ml as film via solution casting method. The concentration of the supernatant was about 0.3 mg/mL. The effect of GNS on the β-phase formation and mechanisms of piezoelectric formation in the PVDF/GNS nanocomposites were investigated. The results showed that with the varying amounts of GNS, the crystalline structure, the morphology, and the dielectric and piezoelectric properties of PVDF/GNS nanocomposites changed. GNS acts as an effective nucleation agent with the orientation almost parallel to the surface of the film meanwhile increasing the amount of beta phase in the PVDF matrix with increasing amount of GNS, also the relative dielectric constant and dielectric loss of the nanocomposites increased with increasing amount of GNS. The value d33 also increased with increasing amount of GNS, and reached a maximum (6.7 pC/N) with 6 ml GNS. The mechanism of piezoelectric formation was proposed based on experiment results of PVDF/GNS nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Hilczer, J. Kulek, H. Smogor, Ferroelectrics 225, 33 (1999)

    Article  Google Scholar 

  2. M.P. Siliva, G. Botelho, J.G. Rocha, S. Lanceros-Mendez, Polym. Test. 29, 613 (2010)

    Article  Google Scholar 

  3. X.J. He, K. Yao, Appl. Phys. Lett. 89, 112909 (2006)

    Article  Google Scholar 

  4. S.L. Jiang, Y. Yu, Y.K. Zeng, Curr. Appl. Phys. 9, 956 (2009)

    Article  Google Scholar 

  5. A.J. Lovinger, Science 220, 1115 (1983)

    Article  CAS  Google Scholar 

  6. C. Irlikseven, E. Altintas, H.Z. Durusoy, J. Mater. Sci. Mater. Electron. 12, 601 (2001)

    Article  Google Scholar 

  7. S.T. Chen, K. Yao, F.E.H. Tay, L.L.S. Chew, J. Appl. Polym. Sci. 116, 3331 (2010)

    CAS  Google Scholar 

  8. C. Marega, A. Marigo, Eur. Polym. J. 39, 1713 (2003)

    Article  CAS  Google Scholar 

  9. J. Gomes, J.S. Nunes, V. Sencadas, S. Lanceros-Mensdez, Smart Mater. Struct. 19, 065010 (2010)

    Article  Google Scholar 

  10. V. Sencadas, R.J.R. Gregorio, S. Lanceros-mendez, J. Macromol. Sci. Part B Phys. 48, 514 (2009)

    Article  CAS  Google Scholar 

  11. J.K. Yuan, Z.M. Dang, S.H. Yao, J.W. Zha, T. Zhou, S.T. Li, J.B. Bai, J. Mater. Chem. 20, 2441 (2010)

    Article  CAS  Google Scholar 

  12. A. Salimi, A.A. Yousefi, J. Polym. Sci. Part B Polym. Phys. 42, 3487 (2004)

    Article  CAS  Google Scholar 

  13. Y.J. Park, Y.S. Kang, C. Park, Eur. Polym. J. 41, 1002 (2005)

    Article  CAS  Google Scholar 

  14. W.Z. Ma, J. Zhang, S.J. Chen, X.L. Wang, J. Macromol. Sci. Part B 47, 434 (2008)

    Article  CAS  Google Scholar 

  15. A. Tawansi, A.H. Oraby, S.I. Badr, M. Abdelaziz, J. Mater. Sci. Mater. Electron. 14, 135 (2003)

    Article  CAS  Google Scholar 

  16. Q.P. Wang, S.L. Jiang, Y.Y. Zhang, G.Z. Zhang, L.Y. Xiong, Polym. Bull. 66, 821 (2010)

    Article  Google Scholar 

  17. J.B. Song, C.H. Lu, D. Xu, Y.R. Ni, Y.J. Liu, Z.Z. Xu, J.X. Liu, Polym. Int. 59, 954 (2010)

    Article  CAS  Google Scholar 

  18. S.L. Jiang, Y. Yu, J.J. Xie, L.P. Wang, Y.K. Zeng, M. Fu, T. Li, J. Appl. Polym. Sci. 116, 838 (2010)

    CAS  Google Scholar 

  19. J.N. Martins, T.S. Bassani, G.M. Barra, R.V.B. Oliveira, Polym. Int. 60, 430 (2011)

    Article  CAS  Google Scholar 

  20. S.P. Bao, G.D. Liang, S.C. Tjong, Carbon 49, 1758 (2011)

    Article  CAS  Google Scholar 

  21. A. Lund, C. Gustafsson, H. Bertilsson, R.W. Rychwalski, Compos. Sci. Technol. 71, 222 (2011)

    Article  CAS  Google Scholar 

  22. D. Ratna, S. Divekar, S. Patchaiappan, A.B. Samui, B.C. Chakraborty, Polym. Int. 56, 900 (2007)

    Article  CAS  Google Scholar 

  23. B.S. Ince-Gunduz, R. Alpern, D. Amare, J. Crawford, B. Dolan, S. Jones, R. Kobylarz, M. Reveley, P. Cebe, Polymer 51, 1485 (2010)

    Article  CAS  Google Scholar 

  24. D. Shah, P. Maiti, E. Gunn, D.F. Schmidt, D.D. Jiang, C.A. Batt, E.P. Giannelis, Adv. Mater. 16, 1173 (2004)

    Article  CAS  Google Scholar 

  25. K.P. Pramoda, A. Mohamed, I.Y. Phang, T.X. Liu, Polym. Int. 54, 226 (2005)

    Article  CAS  Google Scholar 

  26. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  CAS  Google Scholar 

  27. D.A. Nguyen, Y.R. Lee, A.V. Raghu, H.M. Jeong, C.M. Shin, B.K. Kim, Polym. Int. 58, 412 (2009)

    Article  CAS  Google Scholar 

  28. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  CAS  Google Scholar 

  29. Y.R. Lee, A.V. Raghu, H.M. Jeong, B.K. Kim, Macromol. Chem. Phys. 210, 1247 (2009)

    Article  CAS  Google Scholar 

  30. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  CAS  Google Scholar 

  31. A.V. Raghu, Y.R. Lee, H.M. Jeong, C.M. Shin, Macromol. Chem. Phys. 209, 2487 (2008)

    Article  CAS  Google Scholar 

  32. Y. Yu, S.L. Jiang, W.L. Zhou, X.S. Miao, Y.K. Zeng, G.Z. Zhang, Y.Y. Zhang, Q.F. Zhang, H. Zhao, Appl. Phys. Lett. (2012). doi:10.1063/1.4736576

  33. Y. Hernandez, M. Lotya, D. Rickard, S.D. Berbgin, J.N. Coleman, Langmuir 26, 3208 (2010)

    Article  CAS  Google Scholar 

  34. M.A. Bachmann, J.B. Lando, Macromolecules 14, 40 (1981)

    Article  CAS  Google Scholar 

  35. A. Bello, E. Laredo, M. Grimau, Phys. Rev. B 60, 12764 (1999)

    Article  CAS  Google Scholar 

  36. B.J. Jungnickel, in Polymeric Materials Handbook (CRC Press Inc., New York, 1996), pp. 7115–7122

  37. Y.Y. Zhang, S.L. Jiang, Y. Yu, G. Xiong, Q.F. Zhang, G.Z. Zhang, J. Appl. Polym. Sci. 123, 2595 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National High Technology Research and Development Program of China (No. 2007AA03Z120). The authors also wish to thank Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglin Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Jiang, S., Fan, M. et al. Piezoelectric formation mechanisms and phase transformation of poly(vinylidene fluoride)/graphite nanosheets nanocomposites. J Mater Sci: Mater Electron 24, 927–932 (2013). https://doi.org/10.1007/s10854-012-0851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0851-1

Keywords

Navigation