Skip to main content
Log in

Influence of annealing temperature and oxygen atmosphere on the optical and photoluminescence properties of BaTiO3 amorphous thin films prepared by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Homogeneous and transparent BaTiO3 thin films were prepared by sol–gel dip coating method. The prepared BaTiO3 thin films were annealed in air and O2 atmosphere at different temperatures. The annealed BaTiO3 thin films were amorphous in nature. Scanning electron microscopy (SEM) revealed the nucleation and particle growth on the films. Energy-dispersive X-ray (EDX) analysis data revealed the adsorption of oxygen atoms in the BaTiO3 film. The direct energy band gap was found to vary (3.84–3.58 eV) as functions of annealing atmosphere and temperature. Photoluminescence (PL) revealed intense emission peaks at 393 and 675 nm. Quenching of PL intensity was observed in films annealed at high temperature and in O2 atmosphere. This is due to reduction in the oxygen vacancy by the adsorption of oxygen in the film. Luminescence spectra also have been related to the results obtained by SEM and EDX analysis. The change in luminescence intensity of BaTiO3 thin films makes it suitable for optoelectronic temperature sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.R. Von Hipple (ed.), Dielectric Materials and Applications (Wiley, New York, 1954)

    Google Scholar 

  2. R.C. Buchanan (ed.), Ceramic Materials for Electronics (Marcel Dekker, New York, 1986)

  3. A. Bruno, D.K. Swanson, J. Am. Ceram. Soc. 76, 1233–1241 (1993)

    Article  CAS  Google Scholar 

  4. E. Shi, C.R. Cho, M.S. Jang, S.Y. Jeong, H.J. Kim, J. Mater. Res. 9, 2914–2918 (1994)

    Article  CAS  Google Scholar 

  5. C.R. Cho, E. Shi, M.S. Jang, S.Y. Jeong, S.C. Kim, Jpn. J. Appl. Phys. 33, 4984–4990 (1994)

    Article  CAS  Google Scholar 

  6. P. Markondeya Raj, Shu Xiang, Manish Kumar, Isaac Robin Abothu, Jin-Hyun Hwang, Yuzi Liu, Hiroshi Yamamoto, Rao Tummala, J. Mater Sci. Mater. Electron. 23, 901–908 (2012)

    Article  Google Scholar 

  7. Jun Wang, Tianjin Zhang, Junhuai Xiang, Wenkui Li, Shuwang Duo, Mingshen Li, J. Mater. Sci.: Mater. Electron. 20, 44–48 (2009)

    Article  Google Scholar 

  8. D.J. McClure, J.R. Crowe, J. Vac. Sci. Technol. 16, 311 (1979)

    Article  CAS  Google Scholar 

  9. V.S. Dharmadhikari, W.W. Grannemann, J. Appl. Phys. 53, 8988 (1982)

    Article  CAS  Google Scholar 

  10. S.N. Chen, E.S. Ramakrishnan, W.W. Grannemann, J. Vac. Sci. Technol. A 3, 678 (1985)

    Article  CAS  Google Scholar 

  11. H.A. Lu, L.A. Wills, B.W. Wessels, Appl. Phys. Lett. 64, 2973 (1994)

    Article  CAS  Google Scholar 

  12. J. Meng, Y. Huang, W. Zhang, Z. Du, Z. Zhu, G. Zou, Phys. Lett. A 205, 72 (1995)

    Article  CAS  Google Scholar 

  13. S. Murakami, M. Herren, D. Rau, T. Sakurai, M. Morita, J. Lumin. 83–84, 215 (1999)

    Article  Google Scholar 

  14. F.M. Pontes, J.H.G. Rangel, E.R. Leite, E. Longo, J.A. Varela, Thin Solid Films 366, 232 (2000)

    Article  CAS  Google Scholar 

  15. P.C. Joshi, S.B. Desu, Thin Solid Films 300, 289 (1997)

    Article  CAS  Google Scholar 

  16. R. Leonelli, J.L. Brebner, Phys. Rev. B 33, 8649 (1986)

    Article  CAS  Google Scholar 

  17. M. Cardona, Phys. Rev. A 140, 651 (1965)

    CAS  Google Scholar 

  18. C.N. Berhmd, H.J. Braun, Phys. Rev. 164, 790 (1967)

    Article  Google Scholar 

  19. M. Aguilar, C. Godefroy, G. Godefroy, Solid State Commun. 30, 525 (1979)

    Article  CAS  Google Scholar 

  20. H. Ihrig, M. Klerk, Appl. Phys. Lett. 35, 307 (1979)

    Article  CAS  Google Scholar 

  21. H. Ihrig, J.H.T. Hengst, M. Klerk, Z. Phys. B 40, 301 (1981)

    Article  CAS  Google Scholar 

  22. M. Aguilar, F. Agullo-Lopez, J. Appl. Phys. 53, 9009 (1982)

    Article  CAS  Google Scholar 

  23. K. Joy, I. John Berlin, Prabitha B. Nair, J.S. Lakshmi, Georgi P. Daniel, P.V. Thomas, J. Phys. Chem. Solids 72, 673 (2011)

    Article  CAS  Google Scholar 

  24. Wen-Ching Shih, Ming-Han Chiang, J. Mater. Sci.: Mater. Electron. 21, 844–848 (2010)

    Article  CAS  Google Scholar 

  25. H.X. Zhang, Materials Chemistry and Physics, 63, p. 174 (2000)

  26. F.M. Pontes, E. Longo, J.H. Rangel, M.I. Bernardi, E.R. Leite, J.A. Varela, Mater. Lett. 43, 249 (2000)

    Article  CAS  Google Scholar 

  27. Nickolay Golego, S.A. Studenikin, Michael Cocivera, Chem. Mater. 10, 2000–2005 (1998)

    Article  CAS  Google Scholar 

  28. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  CAS  Google Scholar 

  29. R. Thomas, D.C. Dube, Jpn. J. Appl. Phys. 36, 7337 (1997)

    Article  CAS  Google Scholar 

  30. F.M. Pontes, C.D. Pinheiro, E. Longo, E.R. Leite, S.R. de Lazaro, R. Magnani, P.S. Pizani, T.M. Boschi, F. Lanciotti, J. Lumin. 104, 175 (2003)

    Article  CAS  Google Scholar 

  31. P. Li, J.F. McDonald, T.M. Lu, J. Appl. Phys. 71, 5596 (1992)

    Article  CAS  Google Scholar 

  32. B.E. Yoldas, P.W. Partlow, Thin Solid Film 129, 1 (1985)

    Article  CAS  Google Scholar 

  33. M.K. Ahmad, M.L.M. Halid, N.A. Rasheid, A.Z. Ahmed, S. Abdullah, M. Rusop, J. Sustain. Energy Environ. 1, 17–20 (2010)

    CAS  Google Scholar 

  34. R. Vijayalakshmi, V. Rajendran, Dig. J. Nanomater. Biostruct. 5(2), 511–517 (2010)

    Google Scholar 

  35. M.S. Zhang, Z. Yin, Q. Chen, W. Zhang, W. Chen, Solid State Commun. 119, 659–663 (2001)

    Article  CAS  Google Scholar 

  36. L.S. Cavalcante, J. Phys. Chem. Solids 69, 1782–1789 (2008)

    Article  CAS  Google Scholar 

  37. M. Shen, Z. Dong, Z. Gan, S. Ge, W. Cao, Appl. Phys. Lett. 80, 2538 (2002)

    Article  CAS  Google Scholar 

  38. E.R. Leite, F.M. Pontes, E.C. Paris, C.A. Paskocimas, E.J.H. Lee, E. Longo, P.S. Pizani, J.A. Varela, V. Mastelaro, Adv. Mater. Opt. Electron. 10, 235 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Joy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maneeshya, L.V., Anitha, V.S., Lekshmy, S.S. et al. Influence of annealing temperature and oxygen atmosphere on the optical and photoluminescence properties of BaTiO3 amorphous thin films prepared by sol–gel method. J Mater Sci: Mater Electron 24, 848–854 (2013). https://doi.org/10.1007/s10854-012-0830-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0830-6

Keywords

Navigation