Skip to main content
Log in

Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering

Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study probes the effect of annealing temperature on electrical, optical and microstructural properties of indium tin oxide (ITO) films deposited onto soda lime glass substrates by conventional direct current (DC) magnetron reactive sputtering technique at 100 watt using an ITO ceramic target (In2O3:SnO2, 90:10 wt%) in argon atmosphere at room temperature. The films obtained are exposed to the calcination process at different temperature up to 700 °C. X–ray diffractometer (XRD), ultra violet-visible spectrometer (UV–vis) and atomic force microscopy (AFM) measurements are performed to characterize the samples. Moreover, phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. The results obtained show that all the properties depend strongly on the annealing temperature. XRD results indicate that all the samples produced contain the In2O3 phase only and exhibit the polycrystalline and cubic bixbite structure with more intensity of diffraction lines with increasing the annealing temperature until 400 °C; in fact the strongest intensity of (222) peak is obtained for the sample annealed at 400 °C, meaning that the sample has the greatest ratio I 222/I 400 and the maximum grain size (54 nm). As for the AFM results, the sample prepared at 400 °C has the best microstructure with the lower surface roughness. Additionally, the transmittance measurements illustrate that the amplitude of interference oscillation is in the range from 78 (for the film annealed at 400 °C) to 93 % (for the film annealed at 100 °C). The refractive index, packing density, porosity and optical band gap of the ITO thin films are also evaluated from the transmittance spectra. According to the results, the film annealed at 400 °C obtains the better optical properties due to the high refractive index while the film produced at 100 °C exhibits much better photoactivity than the other films as a result of the large optical energy band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Touskova, J. Kovanda, L. Dobiasova, V. Parizek, P. Kielar, Sol. Energ. Mat. Sol. C 37, 65 (1995)

    Google Scholar 

  2. I. Hamberg, C.G. Granqvist, K.F. Berggren, B.E. Sernelius, L. Engstrom, Vacuum 35, 9 (1985)

    Article  Google Scholar 

  3. A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Batzner, F.J. Haung, M. Kalin, D. Rudman, A.N. Tiwari, Prog. Photovolt. Res. Appl. 12, 93 (2004)

    Article  CAS  Google Scholar 

  4. H.M. Zeyada, M.M. El-Nahass, I.K. El-Zawawi, E.M. El-Menyawy, Eur. Phys. J. Appl. Phys. 49, 10301 (2010)

    Article  Google Scholar 

  5. S.K. Poznyak, A.N. Golubev, A.I. Kulak, Surf. Sci. 454, 396 (2000)

    Article  Google Scholar 

  6. D.G. Parker, P.G. Say, Electron. Lett. 22, 7 (1986)

    Article  Google Scholar 

  7. M.C. de Andrade, S. Moehlecke, Appl. Phys. A 58, 6 (1994)

    Article  Google Scholar 

  8. K.L. Chopra, P.D. Paulson, V. Dutta, Prog. Photovolt. Res. Appl. 12, 69 (2004)

    Article  CAS  Google Scholar 

  9. R. Tueta, M. Braguier, Thin Solid Films 80, 8 (1981)

    Article  Google Scholar 

  10. T.J. Coutts, X. Li, M.W. Wanlass, K.A. Emery, T.A. Cessert, IEEE Electron Device Lett. 26, 660 (1990)

    Google Scholar 

  11. M. Masuda, K. Sakuma, E. Satoh, Y. Yamasaki, H. Miyasaka, J. Takeuchi, in Proc. 6th Int. Electron. Manuf. Technol. Symp.(1989), p. 95

  12. E. Takeda, T. Kawaguchi, Y. Nanno, H. Tsutsu, T. Tamura, S. Ishihara, S. Nagata, in Proc. Int. Display Research Conf. (1988), p. 155

  13. P.P. Deimel, B.B. Heimhofer, G. Krotz, H.J. Lilienhof, J. Wind, G. Muller, E. Voges, IEEE Photon Technol. Lett. 2, 449 (1990)

    Article  Google Scholar 

  14. Y.S. Kim, Y.C. Park, S.G. Ansari, J.Y. Lee, B.S. Lee, H.S. Shin, Surf. Coat. Technol. 173, 299 (2003)

    Article  CAS  Google Scholar 

  15. M.S. Hwang, H.J. Lee, H.S. Jeong, Y.W. Seo, S.J. Kwon, Surf. Coat. Technol. 171, 29 (2002)

    Article  Google Scholar 

  16. S.H. Keshmiri, M. Rezaee-Roknabadi, S. Ashok, Thin Solid Films 413, 167 (2002)

    Article  CAS  Google Scholar 

  17. S. Ishibashi, Y. Higuchi, Y. Ota, K. Nakamura, J. Vac. Sci. Technol. A 8, 1403 (1990)

    Google Scholar 

  18. I. Hamberg, C.G. Grangvist, J. Appl. Phys. 60, R123 (1986)

    Article  CAS  Google Scholar 

  19. A. Antony, M. Nisha, R. Manoj, M.K. Jayaraj, Appl. Surf. Sci. 225, 294 (2004)

    Article  CAS  Google Scholar 

  20. V. Senthilkumara, P. Vickramana, M. Jayachandran, C. Sanjeevirajac, Vacuum 84, 864 (2010)

    Article  Google Scholar 

  21. H.Y. Yeom, N. Popovich, E. Chason, D.C. Paine, Thin Solid Films 411, 17 (2002)

    Article  CAS  Google Scholar 

  22. H. Morikawa, M. Fujita, Thin Solid Films 359, 61 (2000)

    Article  CAS  Google Scholar 

  23. M.J. Alam, D.C. Cameron, Thin Solid Films 420–421, 76 (2002)

    Article  Google Scholar 

  24. Y.S. Jung, Solid State Commun. 129, 491 (2004)

    Article  CAS  Google Scholar 

  25. F. Zhu, C.H.A. Huan, K.Z. Hang, A.T.S. Wee, Thin Solid Films 359, 244 (2000)

    Article  CAS  Google Scholar 

  26. Y. Nishio, T. Sei, T. Tsuchiya, J. Mater. Sci. 31, 1761 (1996)

    Article  CAS  Google Scholar 

  27. H.S. Kwok, X.W. Sun, D.H. Kim, Thin Solid Films 335, 299 (1998)

    Article  CAS  Google Scholar 

  28. H. Kim, A. Pique, J.S. Horwitz, Appl. Phys. Lett. 74, 344 (1999)

    Article  Google Scholar 

  29. R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2139 (1998)

    Article  Google Scholar 

  30. G. Yildirim, S. Bal, and A. Varilci, J. Supercond. Nov. Magn. (2012). doi:10.1007/s10948-012-1497-1

  31. L. Tsarkova, A. Knoll, G. Krausch, R. Magerle, Macromolecules 39, 3608 (2006)

    Article  CAS  Google Scholar 

  32. I. Zalakain, J.A. Ramos, R. Fernandez, H. Etxeberria, I. Mondragon, J. Appl. Polym. Sci. 25, 1552 (2012)

    Article  Google Scholar 

  33. W.V. Zoelen, E. Polushkin, G.T. Brinke, Macromolecules 41, 8807 (2008)

    Article  Google Scholar 

  34. J.H. Lee, J. Electroceram. 23, 554 (2009)

    Article  CAS  Google Scholar 

  35. C.W. Ow-Yang, D. Spinner, Y. Shigesato, D.C. Paine, J. Appl. Phys. 83, 45 (1998)

    Article  Google Scholar 

  36. P.K. Song, H. Akao, M. Kamei, Y. Shigesato, I.Y. Asui, Jpn. J. Appl. Phys. 38, 5224 (1999)

    Article  CAS  Google Scholar 

  37. N. Manavizadeh, A. Khodayari, E. Asl Soleimani, S. Bagherzadeh, Iran. J. Chem. Chem. Eng. 28, 57 (2009)

    CAS  Google Scholar 

  38. Y. Shigesato, D.C. Paine, Thin Solid Films 238, 44 (1994)

    Article  CAS  Google Scholar 

  39. E. Terzini, G. Nobile, S. Loreti, C. Minarini, T. Polichetti, P. Thilakan, Jpn. J. Appl. Phys. 38, 3448 (1999)

    Article  CAS  Google Scholar 

  40. A. Mohammadi Gheidari, F. Behafarid, G. Kavei, M. Kazemzad, Mater. Sci. Eng. B 136, 37 (2007)

    Article  Google Scholar 

  41. C.V.R. Vassant Kumar, A. Mansingh, J. Appl. Phys. 65, 1270 (1989)

    Article  Google Scholar 

  42. C. Guillen, J. Herrero, Thin Solid Films 510, 260 (2006)

    Article  CAS  Google Scholar 

  43. L. Kerkach, A. Layadi, E. Dogheche, D. Remiens, J. Phys. D Appl. Phys. 39, 184 (2006)

    Article  Google Scholar 

  44. J. Ye, K. Nakamura, Phys. Rev. B 48, 7554 (1993)

    Article  CAS  Google Scholar 

  45. S. Shin, Mater. Res. Bull. 16, 299 (1981)

    Article  CAS  Google Scholar 

  46. W.F. Wu, B.S. Chiou, Thin Solid Films 293, 244 (1997)

    Article  CAS  Google Scholar 

  47. E. Fortunato, I. Ferreira, F. Giuliani, P. Wurmsdobler, R. Martins, J. Non-Cryst, Solids 1213, 266 (2000)

    Google Scholar 

  48. P. Thilakan, C. Minarini, S. Loreti, E. Terzini, Thin Solid Films 388, 34 (2001)

    Article  CAS  Google Scholar 

  49. D. Kim, Y. Han, J. S. Cho, S. K. Koh, Thin Solid Films 377/378, 81 (2000)

    Google Scholar 

  50. G. Yildirim, A. Varilci, M. Akdogan, C. Terzioglu, J. Mater. Sci Mater. Electron. (2011). doi:10.1007/s10854-011-0522-7

  51. J. Economy, R. Anderson, Inorg. Chem. 5, 989 (1966)

    Article  CAS  Google Scholar 

  52. S. Bal, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, Y. Zalaoglu, J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1360-9

  53. B.D. Cullity, Element of X-ray Diffraction, 3rd edn. (Addition-Wesley, Reading MA, 2001)

    Google Scholar 

  54. G. Yildirim, S. Bal, E. Yucel, M. Dogruer, M. Akdogan, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1324-0

  55. G. Jayalakshmi, N. Gopalakrishnan, B.K. Panigrahi, T. Balasubramanian, Crst. Res. Technol. 12, 1257 (2011)

    Article  Google Scholar 

  56. B.L. Zhu, X.Z. Zhao, S. Xu, F.H. Su, G.H. Li, X.G. Wu, J. Wu, R. Wu, J. Liu, Jpn. J. Appl. Phys. 47, 2225 (2008)

    Article  CAS  Google Scholar 

  57. Gokcen M, Bal S, Yildirim G, Gulen M, Varilci A, J. Mater. Sci. Mater. Electron. (2012). doi:10.1007/s10854-012-0690-0

  58. G. Yildirim, S. Bal, M. Gulen, A. Varilci, E. Budak, M. Akdogan, Cryst. Res. Technol. 47, 195 (2012)

    Article  CAS  Google Scholar 

  59. G. Yildirim, M. Akdogan, A. Varilci, C. Terzioglu, Cryst. Res. Technol. 45, 1161 (2010)

    Article  CAS  Google Scholar 

  60. H. Kim, J.S. Horwitz, G. Kushto, A. Pique, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, J. Appl. Phys. 88, 6021 (2000)

    Article  CAS  Google Scholar 

  61. G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, V. Golonvanov, A. Cornet, J. Morante, A. Cabot, J. Arbiol, Thin Solid Films 406, 315 (2004)

    Article  Google Scholar 

  62. I.V. Tudose, P. Horvath, M. Suchea, S. Christoulakis, T. Kitsopoulos, G. Kiriakidis, J. Appl. Phys. 89, 57 (2007)

    Article  CAS  Google Scholar 

  63. H. Kim, C.M. Gilmore, J. Appl. Phys. 86, 6451 (1999)

    Article  CAS  Google Scholar 

  64. C.S. Yadav, P.L. Paulose, New J. Phys. 11, 103046 (2009)

    Article  Google Scholar 

  65. R. Thomas, D.C. Dube, M.N. Kamalasanan, S. Chandra, Thin Solid Films 346, 212 (1999)

    Article  CAS  Google Scholar 

  66. M.M. El-Nahass, E.M. El-Menyawy, Mater. Sci. Eng. B Adv. 177, 145 (2012)

    Article  CAS  Google Scholar 

  67. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  CAS  Google Scholar 

  68. J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E 9, 1002 (1976)

    Article  CAS  Google Scholar 

  69. W.W. Mobzen, J. Vac. Sci. Technol. 12, 99 (1975)

    Article  Google Scholar 

  70. J. Szczyrbowski, A. Dietrich, H. Hoffmann, Phys. Stat. Sol. A 78, 243 (1983)

    Article  CAS  Google Scholar 

  71. H.A. Macleod, J. Vac. Sci. Technol. A 4, 418 (1986)

    Google Scholar 

  72. W.L. Bragg, A.B. Pippard, Acta Crystallogr. 6, 865 (1953)

    Article  CAS  Google Scholar 

  73. B.E. Yoldas, P.W. Partlow, Thin Solid Films 129, 1 (1985)

    Article  CAS  Google Scholar 

  74. S.A. Kinckerbocker, A.K. Kulkarni, J. Vac. Sci. Technol. A 143, 757 (1996)

    Google Scholar 

  75. H.N. Cui, V. Teixeira, A. Monteiro, Vacuum 67, 589 (2002)

    Article  CAS  Google Scholar 

  76. J.I. Pankove, Optical Processes in Semiconductors, 2nd edn. (Dover Publications Inc., New York, 1970)

    Google Scholar 

  77. Y.D. Glinka, S.H. Lin, L.P. Hwang, Y.T. Chen, N.H. Tolk, Phys. Rev. B 64, 085421 (2001)

    Article  Google Scholar 

  78. G.L. Tian, H.B. He, J.D. Shao, Chin. Phys. Lett. 22, 1787 (2005)

    Article  CAS  Google Scholar 

  79. F.M. Liu, T.M. Wang, J.Q. Li, C. Wang, S.K. Zheng, M. Duan, J. Magn. Magn. Mater. 251, 245 (2002)

    Article  CAS  Google Scholar 

  80. Y.K. Chang, H.H. Hsieh, W.F. Pong, M.H. Tsai, F.Z. Chien, P.K. Tseng, L.C. Chen, T.Y. Wang, K.H. Chen, D.M. Bhusari, J.R. Yang, S.T. Lin, Phys. Rev. Lett. 82, 5377 (1999)

    Article  CAS  Google Scholar 

  81. J.T. Jiu, F.M. Wang, M. Adachi, Mater. Lett. 58, 3915 (2004)

    Article  CAS  Google Scholar 

  82. J.F. Smith, A.J. Aronson, D. Chen, W.H. Class, Thin Solid Films 72, 469 (1980)

    Article  CAS  Google Scholar 

  83. M.J. Alam, D.C. Cameron, Thin Solid Films 377–378, 455 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gulen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulen, M., Yildirim, G., Bal, S. et al. Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering. J Mater Sci: Mater Electron 24, 467–474 (2013). https://doi.org/10.1007/s10854-012-0768-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0768-8

Keywords

Navigation