Skip to main content

Advertisement

Log in

Influence of secondary anodization voltage on free-standing crystallized TiO2 nanotube array membrane

Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Vertically aligned, free-standing crystallized TiO2 nanotube arrays with a length of 32 μm have been fabricated by a two-step anodization method. The TiO2 nanotube membrane can be detached from the Ti substrate through the secondary anodization process. The influence of the secondary anodization voltage on the morphology, crystalline phase and photovoltaic performance of the as-fabricated samples has been investigated. Results show that the side wall of TiO2 nanotubes becomes obviously thin as the secondary anodization voltage increases and leads to crack when the voltage reaches 25 V. The mass fraction of the anatase reduces by the increase of the voltage. Furthermore, the dye-sensitized solar cells (DSSCs) based on TiO2 nanotube arrays have been assembled. The energy conversion efficiency decreases with the increase of secondary anodization voltage, and a highest energy conversion efficiency of 10.6 % under UV illumination (368.1 nm) is obtained from the cell with TiO2 nanotube membrane re-anodizad at 15 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Kawahar, Y. Konishi, H. Tada, N. Tohge, J. Nishii, S. Ito, Angew. Chem. Int. Ed. 41, 281 (2002)

    Article  Google Scholar 

  2. M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, K.G. Ong, Nanotechnology 17, 398 (2006)

    Article  CAS  Google Scholar 

  3. S.J. Yoo, J.W. Lim, Y.E. Sung, Sol. Energy Mater. Sol. Cells 90, 477 (2006)

    Article  CAS  Google Scholar 

  4. G.K. Mor, S. Kim, M. Paulose, O.K. Varghese, K. Shankar, J. Basham, C.A. Grimes, Nano. Lett. 9, 4250 (2009)

    Article  CAS  Google Scholar 

  5. Y. Liu, M. Li, H. Wang, J.M. Zheng, H.M. Xu, Q.H. Ye, H. Shen, J. Phys. D 43, 205103 (2010)

    Article  Google Scholar 

  6. K. Zhu, N.R. Neate, A. Miedaner, A.J. Frank, Nano. Lett. 7, 69 (2007)

    Article  CAS  Google Scholar 

  7. K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Nanotechology 18, 065707 (2007)

    Article  Google Scholar 

  8. A.Z. Sadek, H.D. Zheng, K. Lathan, W. Wlodarski, K. Schmidt-Mende, Langmuir 25, 509 (2009)

    Article  CAS  Google Scholar 

  9. H.D. Zheng, A.Z. Sadek, M. Breedon, D. Yao, K. Latham, J.D. Plessis, K. Kalantar-Zadeh, Electrochem. Commun. 11, 1308 (2009)

    Article  CAS  Google Scholar 

  10. S.L. Lim, Y.L. Liu, J. Li, E.T. Kang, C.K. Ong, Appl. Surf. Sci. 251, 6612 (2011)

    Article  Google Scholar 

  11. H. Park, W.R. Kim, Sol. Energy Mater. Sol. Cells 95, 184 (2011)

    Article  CAS  Google Scholar 

  12. Q.W. Chen, D.S. Xu, J. Phys. Chem. C 113, 6310 (2009)

    Article  CAS  Google Scholar 

  13. J. Lin, J.F. Chen, X.F. Chen, Nanoscale. Res. Lett.6, 475 (2011)

    Article  CAS  Google Scholar 

  14. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, J. Phys. Chem. B 110, 16179 (2006)

    Article  CAS  Google Scholar 

  15. J. Lin, J.F. Chen, X.F. Chen, Electrochem. Commun. 12, 1062 (2010)

    Article  CAS  Google Scholar 

  16. R.A. Spurr, H. Myers, Anal Chem 29, 760 (1957)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities, “985 project” (Grant No. 98507-010009) and “211 project” of Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Yang, D. & Wang, Wz. Influence of secondary anodization voltage on free-standing crystallized TiO2 nanotube array membrane. J Mater Sci: Mater Electron 24, 443–447 (2013). https://doi.org/10.1007/s10854-012-0717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0717-6

Keywords

Navigation