Skip to main content
Log in

Preparation and gas-sensing properties of SnO2/graphene quantum dots composites via solvothermal method

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

SnO2/graphene quantum dots (GQDs) nano-composites were prepared via solvothermal method (160 °C, 10 h), in which graphene quantum dots were synthesized from graphene oxide by one-step solvothermal method. The nano-composites were characterized by means of HRTEM, XRD, SEM, FTIR, XPS and N2 adsorption–desorption, respectively. The sensor devices were fabricated using SnO2/GQDs nano-composites as sensing materials. The effect of the GQDs content on the gas-sensing responses and the gas-sensing selectivity was investigated. The experimental results showed that the sensor based on SnO2/GQDs nano-composite (S-2) exhibited good response and good selectivity to acetone vapor. When operating at 275 °C, the responses of the sensor based on SnO2/GQDs nano-composite (S-2) to 1000 and 0.1 ppm acetone reached 120.6 and 1.3, respectively; the response time and the recovery time for 1000 ppm acetone were 17 and 13 s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Do J-S, Wang SH (2013) On the sensitivity of conductimetric acetone gas sensor based on polypyrrole and polyaniline conducting polymers. Sens Actuators B 185:39–46

    Article  Google Scholar 

  2. Cao W, Duan Y (2006) Breath analysis: potential for clinical diagnosis and exposure assessment. Clin Chem 52:800–811

    Article  Google Scholar 

  3. Shi J, Hu G, Sun Y, Geng M, Wu J, Liu Y, Ge M, Tao J, Cao M, Dai N (2011) WO3 nanocrystals: synthesis and application in highly sensitive detection of acetone. Sens Actuators B 156:820–824

    Article  Google Scholar 

  4. Punginsang M, Wisitsora-at A, Tuantranont A, Phanichphant S, Liewhiran C (2015) Effects of cobalt doping on nitric oxide, acetone and ethanol sensing performances of FSP-made SnO2 nanoparticles. Sens Actuators B 210:589–601

    Article  Google Scholar 

  5. Jung J-Y, Lee C-S (2011) Characteristics of the TiO2/SnO2 thick film semiconductor gas sensor to determine fish freshness. J Ind Eng Chem 17:237–242

    Article  Google Scholar 

  6. Cho YH, Kang YC, Lee J-H (2013) Highly selective and sensitive detection of trimethylamine using WO3 hollow spheres prepared by ultrasonic spray pyrolysis. Sens Actuators B 176:971–977

    Article  Google Scholar 

  7. Pandeeswari R, Jeyaprakash BG (2014) Nanostructure α-MoO3 thin film as a highly selective TMA sensor. Biosens Bioelectron 53:182–186

    Article  Google Scholar 

  8. Perillo PM, Rodríguez DF (2016) Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes. J Alloy Compd 657:765–769

    Article  Google Scholar 

  9. Giberti A, Varotta MC, Fabbri B, Gherardi S, Guidi V, Malagù C (2012) High-sensitivity detection of acetaldehyde. Sens Actuators B 174:402–405

    Article  Google Scholar 

  10. Cheng Z, Song L, Ren X, Zheng Q, Xu J (2013) Novel lotus root slice-like self-assembled In2O3 microspheres: synthesis and NO2-sensing properties. Sens Actuators B 176:258–263

    Article  Google Scholar 

  11. Patil SB, Patil PP, More MA (2007) Aceton vapor sensing characteristics of cobalt-doped SnO2 thin films. Sens Actuators B 125:126–130

    Article  Google Scholar 

  12. Tripathy SK, Mishra A, Jha SK, Wahab R, Al-Khedhairy AA (2013) Synthesis of thermally stable monodispersed Au@SnO2 core-shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Anal Methods 5:1456–1462

    Article  Google Scholar 

  13. Gajdošík L (2005) The concentration measurement with SnO2 gas sensor operated in the dynamic regime. Sens Actuators B 106:691–699

    Article  Google Scholar 

  14. Wang TT, Ma SY, Cheng L, Xu XL, Luo J, Jiang XH, Li WQ, Jin WX, Sun XX (2015) Performance of 3D SnO2 microstructure with porous nanosheets for acetic acid sensing. Mater Lett 142:141–144

    Article  Google Scholar 

  15. Jiao Z, Wang Y, Ying M, Xu J, Xu L, Zhang H (2016) Copolymer-asisted fabrication of rambutan-like SnO2 hierarchical nanostructure with enhanced sensitivity for n-butanol. Mater Chem Phys 172:113–120

    Article  Google Scholar 

  16. Bamsaoud SF, Rane SB, Karekar RN, Aiyer RC (2011) Nano particulate SnO2 based resistive films as a hydrogen and acetone vapor sensor. Sens Actuators B 153:382–391

    Article  Google Scholar 

  17. Bagal LK, Patil JY, Mulla IS, Suryavanshi SS (2012) Studies on the resistive response of nickel and cerium doped SnO2 thick films to acetone vapor. Ceram Int 38:6171–6179

    Article  Google Scholar 

  18. Jiang Z, Zhao R, Sun B, Nie G, Ji H, Lei J, Wang C (2016) Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers. Ceram Int 42:15881–15888

    Article  Google Scholar 

  19. Salehi S, Nikan E, Khodadadi AA, Mortazavi Y (2014) Highly sensitive carbon nanotubes–SnO2 nanocomposite sensor for acetone detection in diabetes mellitus breath. Sens Actuators B 205:261–267

    Article  Google Scholar 

  20. Cui S, Wen Z, Mattson EC, Mao S, Chang J, Weinert M, Hirschmugl CJ, Gajdardziska-Jpsifovska M, Chen J (2013) Indium-doped SnO2 nanoparticle-graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J Mater Chem A 1:4462–4467

    Article  Google Scholar 

  21. Neri G, Leonardi SG, Latino M, Donato N, Baek S, Conte DE, Russo PA, Pinna N (2013) Sensing behavior of SnO2/reduced graphene oxide nanocomposites towards NO2. Sens Actuators B 179:61–68

    Article  Google Scholar 

  22. Srivatava V, Jain K (2016) At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor. Mater Lett 169:28–32

    Article  Google Scholar 

  23. Anand K, Singh O, Fingh MP, Kaur J, Singh RC (2014) Hydrogen sensor based on graphene/ZnO nanocomposite. Sens Actuators B 195:409–415

    Article  Google Scholar 

  24. Gu F, Nie R, Han D, Wang Z (2015) In2O3-graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens Actuators B 219:94–99

    Article  Google Scholar 

  25. MalekAlaie M, Jahangiri M, Rashidi AM, HaghighiAsl A, Izadi N (2015) Selective hydrogen sulfide (H2S) sensors based on molybdenum trioxide (MoO3) nanoparticles decorated reduced graphene oxide. Mater Sci Semicond Process 38:93–100

    Article  Google Scholar 

  26. Pan DY, Zhang JC, Li Z, Wu MH (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738

    Article  Google Scholar 

  27. Cheng H, Zhao Y, Fan Y, Xie X, Qu L, Shi G (2012) Graphene-quantum-dot assembled nanotubes: a new platform for efficient raman enhancement. ACS Nano 6:2237–2244

    Article  Google Scholar 

  28. Wang S, Cole IS, Li Q (2016) Quantum-confined bandgap narrowing of TiO2 nanoparticles by graphene quantum dots for visible-light-driven applications. Chem Commun 52:9208–9211

    Article  Google Scholar 

  29. Dutta M, Sarkar S, Ghosh T, Basak D (2012) ZnO/graphene quantum dot solid-state solar cell. J Phys Chem C 116:20127–20131

    Article  Google Scholar 

  30. Liu W, Yang H, Ma C, Ding Y, Ge S, Yu J, Yan M (2014) Graphene–palladium nanowires based electrochemical sensor using ZnFe2O4–graphene quantum dots as an effective peroxidase mimic. Anal Chim Acta 851:181–188

    Article  Google Scholar 

  31. Ji Y, Lee S-A, Cha A-N, Goh M, Bae S, Lee S, Son DI, Kim T-W (2015) Resistive switching characteristics of ZnO–graphene quantum dots and their use as an active component of an organic memory cell with one diode-one resistor architecture. Org Electron 18:77–83

    Article  Google Scholar 

  32. Liu Y, Li W, Li J, Shen H, Li Y, Guo Y (2016) Graphene aerogel-supported and graphene quantum dots-modified g-MnOOH nanotubes as a highly efficient electrocatalyst for oxygen reduction reaction. RSC Adv 6:43116–43126

    Article  Google Scholar 

  33. Hu T, Chu X, Gao F, Dong Y, Sun W, Bai L (2016) Trimethylamine sensing properties of graphene quantum dots/α-Fe2O3 composites. J Solid State Chem 237:284–291

    Article  Google Scholar 

  34. Feng Y, Zhao J, Yan X, Tang F, Xue Q (2014) Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction. Carbon 66:334–339

    Article  Google Scholar 

  35. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu J, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  Google Scholar 

  36. Zhu Y, Li C, Cao C (2013) Strongly coupled mesoporous SnO2–graphene hybrid with enhanced electrochemical and photocatalytic activity. RSC Adv 3:11860–11868

    Article  Google Scholar 

  37. Yan Y, Liu Q, Du X, Qian J, Mao H, Wang K (2015) Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles. Anal Chim Acta 853:258–264

    Article  Google Scholar 

  38. Chen N, Chen L, Cheng Y, Zhao K, Wu X, Xian Y (2015) Molecularly imprinted polymer grafted graphene for simultaneous electrochemical sensing of 4, 4-methylene diphenylamine and aniline by different pulse voltammetry. Talanta 132:155–161

    Article  Google Scholar 

  39. Shi J, Cheng Z, Gao L, Zhang Y, Xu J (2016) Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens Actuators B 230:736–745

    Article  Google Scholar 

  40. Murugan AY, Muraliganth T, Manthiram A (2009) Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem Mater 21:5004–5006

    Article  Google Scholar 

  41. Tuteja SK, Chen R, Kukkar M, Song CK, Mutreja R, Singh S, Paul AK, Lee H, Kim K-H, Deep A, Suri CR (2016) A label-free electrochemical immunosensor for the detection of cardiacmarker using graphene quantum dots (GQDs). Biosens Bioelectron 86:548–556

    Article  Google Scholar 

  42. Yang Z, Zheng X, Zheng J (2016) A facile one-step synthesis of prussian blue/polyaniline/graphene oxide nanocomposites for electrochemical sensing of hydrogen peroxide. Synth Met 221:153–158

    Article  Google Scholar 

  43. Porotnikov NV, Savenko VG, Sidorova OV (1983) Kolebatelnie spektri shpineley sostava Zn2SnO4–Mg2SnO4. Russ J Inorg Chem 28:983–985

    Google Scholar 

  44. Zhou X, Shi T, Zhou H (2012) Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation. Appl Surf Sci 258:6204–6211

    Article  Google Scholar 

  45. Fu Y, Chen Q, He M, Wan Y, Sun X, Xia H, Wang X (2012) Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. Ind Eng Chem Res 51:11700–11709

    Article  Google Scholar 

  46. Zhang Z, Wang Y, Li D, Tan Q, Chen Y, Zhong Z, Su F (2013) Mesoporous Mn0.5Co0.5Fe2O4 nanospheres grown on grapheme for enhanced lithium storage properties. Ind Eng Chem Res 52:14906–14912

    Article  Google Scholar 

  47. Lim HN, Nurzulaikha R, Harrison I, Lim SS, Tan WT, Yeo MC, Yarmo MA, Huang NM (2012) Preparation and characterization of tin oxide, SnO2 nanoparticles decorated graphene. Ceram Int 38:4209–4216

    Article  Google Scholar 

  48. Zhang H, Feng J, Fei T, Liu S, Zhang T (2014) SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens Actuators B 190:472–478

    Article  Google Scholar 

  49. Iftekhar Uddin ASM, Chung G-S (2014) Synthesis of highly dispersed ZnO nanoparticles on graphene surface and their acetylene sensing properties. Sens Actuators B 205:338–344

    Article  Google Scholar 

  50. Wang P, Wang D, Zhang M, Zhu Y, Xu Y, Ma X, Wang X (2016) ZnO nanosheets/graphene oxide nanocomposites for highly effective acetone vapor detection. Sens Actuators B 230:477–484

    Article  Google Scholar 

  51. Yan SH, Ma SY, Xu XL, Li WQ, Luo J, Jin WX, Wang TT, Jiang XH, Lu Y, Song HS (2015) Preparation of SnO2–ZnO hetero-nanofibers and their application in acetone sensing performance. Mater Lett 159:447–450

    Article  Google Scholar 

  52. Zhou X, Wang B, Sun H, Wang C, Sun P, Li X, Hu X, Lu G (2016) Template-free synthesis of hierarchical ZnFe2O4 yolk–shell microspheres for high-sensitivity acetone sensors. Nanoscale 8:5446–5453

    Article  Google Scholar 

  53. Muthukrishnan K, Vanaraja M, Boomadevi S, Karn RK, Singh V, Singh PK, Pandiyan K (2016) Studies on acetone sensing characteristics of ZnO thin film prepared by solegel dip coating. J Alloys Compd 673:138–143

    Article  Google Scholar 

  54. Gao F, Qin G, Li Y, Jiang Q, Luo L, Zhao K, Liu Y, Zhao H (2016) One-pot synthesis of La-doped SnO2 layered nanoarrays with an enhanced gas-sensing performance toward acetone. RSC Adv 6:10298–10310

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (Nos. 61671019, 61271156) and the research project for university personnel returning from overseas sponsored by the Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfeng Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, X., Wang, J., Zhang, J. et al. Preparation and gas-sensing properties of SnO2/graphene quantum dots composites via solvothermal method. J Mater Sci 52, 9441–9451 (2017). https://doi.org/10.1007/s10853-017-1148-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1148-9

Keywords

Navigation