Skip to main content
Log in

The fcc/bcc phase transition in FexNi100−x nanoparticles resolved by first-order reversal curves

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One-pot polyol processing was successfully used for the preparation of FexNi100−x nanoparticles. By increasing Ni concentration in FexNi100−x alloy, the phase transition from bcc to fcc crystalline structure was clearly indicated by the XRD data as well as the measured hysteresis loops. FORC diagrams demonstrated that the prepared samples consist of single-domain magnetic particles with a uniform particle size. By changing the molar ratio of the precursors, different compositions of FeNi alloy were obtained. The influence of the temperature, solvent, surfactant, and amount of NaOH was also studied on the particle size, structure, and magnetic properties of the products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Vieux-Rochaz L, Cuchet R, Vaudaine MH (2000) A new GMR sensor based on NiFe/Ag multilayers. Sens Actuators A 81:53–56

    Article  Google Scholar 

  2. Feng Y, Qiu T (2012) Preparation, characterization and microwave absorbing properties of FeNi alloy prepared by gas atomization method. J Alloy Compd 513:455–459

    Article  Google Scholar 

  3. Karna SK, Mishra SR, Gunapala E, Dubenko I, Malagareddy V, Marasinghe GK, Ali N (2012) Polymer assisted synthesis of FeNi nanoparticles. arXiv:1212.3566

  4. Alikhanzadeh-Arani S, Salavati-Niasari M, Almasi-Kashi M (2012) Morphologies and magnetic properties of FeCo nanoparticles modulated by changing the types of ligands of Co. J Magn Magn Mater 324:3652–3657

    Article  Google Scholar 

  5. Ghanbari D, Salavati-Niasari M, Ghasemi-Kooch M (2014) A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J Ind Eng Chem 20:3970–3974

    Article  Google Scholar 

  6. Alikhanzadeh-Arani S, Almasi-Kashi M, Ramazani A, Salavati-Niasari M, Pezeshki-Nejad Z (2016) Size effects on the magnetic characteristics of a nanostructured Heusler alloy. J Mater Sci 51:1354–1362. doi:10.1007/s10853-015-9454-6

    Article  Google Scholar 

  7. Jartych E, Zurawicz JK, Oleszak D, Pekala M (2000) X-ray diffraction, magnetization and Mossbauer studies of nanocrystalline Fe–Ni alloys prepared by low- and high-energy ball milling. J Magn Magn Mater 208:221–230

    Article  Google Scholar 

  8. Kotan H, Saber M, Koch CC, Scattergood RO (2012) Effect of annealing on microstructure, grain growth, and hardness of nanocrystalline Fe–Ni alloys prepared by mechanical alloying. Mater Sci Eng A 552:310–315

    Article  Google Scholar 

  9. Moghimi N, Abdellah M, Thomas JP, Mohapatra M, Leung KT (2013) Bimetallic FeNi concave nanocubes and nanocages. J Am Chem Soc 135:10958–10961

    Article  Google Scholar 

  10. Liu L, Guan J, Shi W, Sun Z, Zhao J (2010) Facile synthesis and growth mechanism of flowerlike Ni–Fe alloy nanostructures. J Phys Chem C 114:13565–13570

    Article  Google Scholar 

  11. Bana I, Drofenik M, Makovec D (2006) The synthesis of iron–nickel alloy nanoparticles using a reverse micelle technique. J Magn Magn Mater 307:250–256

    Article  Google Scholar 

  12. Lima E Jr, Dragoa V, Bolsoni R, Fichtner PFP (2003) Nanostructured Fe50Ni50 alloy formed by chemical reduction. Solid State Commun 125:265–270

    Article  Google Scholar 

  13. Kodama D, Shinoda K, Sato K, Konno Y, Joseyphus RJ, Motomiya K, Takahashi H, Matsumoto T, Sato Y, Tohji K, Jeyadevan B (2006) Chemical synthesis of sub-micrometer- to nanometer-sized magnetic FeCo dice. Adv Mater 18:3154–3159

    Article  Google Scholar 

  14. Zehani K, Bez R, Boutahar A, Hlil EK, Lassri H, Moscovici J, Mliki N, Bessais L (2014) Structural, magnetic, and electronic properties of high moment FeCo nanoparticles. J Alloy Compd 591:58–64

    Article  Google Scholar 

  15. Töpfer J, Angermann A (2011) Nanocrystalline magnetite and Mn–Zn ferrite particles via the polyol process: synthesis and magnetic properties. Mater Chem Phys 129:337–342

    Article  Google Scholar 

  16. Islam MN, Abbas M, Kim C (2013) Synthesis of monodisperse and high moment nickel-iron (NiFe) nanoparticles using modified polyol process. Curr Appl Phys 13:2010–2013

    Article  Google Scholar 

  17. Karipoth P, Thirumurugan A, Joseyphus RJ (2013) Synthesis and magnetic properties of flower-like FeCo particles through a one pot polyol process. J Colloid Interface Sci 404:49–55

    Article  Google Scholar 

  18. Abbas M, Islam MN, Rao BP, Ogawa T, Takahashi M, Kim C (2013) One-pot synthesis of high magnetization air-stable FeCo nanoparticles by modified polyol method. Mater Lett 91:326–329

    Article  Google Scholar 

  19. Byshkin M, Hou M (2012) Phase transformations and segregation in Fe–Ni alloys and nanoalloys. J Mater Sci 47:5784–5793. doi:10.1007/s10853-012-6475-2

    Article  Google Scholar 

  20. Xu Z, Jin C, Xia A, Zhang J, Zhu G (2013) Structural and magnetic properties of nanocrystalline nickel-rich Fe–Ni alloy powders prepared via hydrazine reduction. J Magn Magn Mater 336:14–19

    Article  Google Scholar 

  21. Viau G, Fievet-Vincent F, Fievet F (1996) Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols. Solid State Ion 84:259–270

    Article  Google Scholar 

  22. Pan S, An Z, Zhang J, Song G (2010) Synthesis and hierarchical assembly of CoNi flowery particles. Mater Chem Phys 124:342–346

    Article  Google Scholar 

  23. Sun L, Hao Y, Chien CL, Searson PC (2005) Tuning the properties of magnetic nanowires IBM. J Res Dev 49:79–102

    Google Scholar 

  24. Chen Y, Luo X, Yue GH, Luo X, Peng DL (2009) Synthesis of iron–nickel nanoparticles via a nonaqueous organometallic route. Mater Chem Phys 113:412–416

    Article  Google Scholar 

  25. Pezeshki-Nejad Z, Almasi-Kashi M, Alikhanzadeh-Arani S, Ramazani A, Salavati-Niasari M (2016) Magnetic and structural characterizations of co-based Heusler nanoparticles fabricated via simple co-precipitation method. J Clust Sci 27:1031–1039. doi:10.1007/s10876-015-0891-9

    Article  Google Scholar 

  26. Ramazani A, Almasi-Kashi M, Montazer AH (2014) Fabrication of single crystalline, uniaxial single domain Co nanowires arrays with high coercivity. J Appl Phys 115:113909

    Article  Google Scholar 

  27. Egli R, Chen AP, Winklhofer M (2010) Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochem Geophys Geosyst 11:1–22

    Article  Google Scholar 

  28. Cornejo DR, Peixoto TRF, Reboh S, Fichtner PFP, de Franco VC, Villas-Boas V, Missell FP (2010) First-order-reversal-curve analysis of Pr–Fe–B-based exchange spring magnets. J Mater Sci 45:5077–5083. doi:10.1007/s10853-010-4353-3

    Article  Google Scholar 

  29. Alikhanzadeh-Arani S, Almasi-Kashi M, Pezeshki-Nejad Z, Ramazani A, Salavati-Niasari M (2016) Detection of single-domain Co2FeAl nanoparticles using first-order reversal curve method. Metall Mater Trans A 47:5234–5241. doi:10.1007/s11661-016-3662-9

    Article  Google Scholar 

  30. Roberts AP, Pike CR, Verosub KL (2000) First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J Geophys Res 105:28461–28475

    Article  Google Scholar 

  31. Alikhanzadeh-Arani S, Almasi-Kashi M, Ramazani A (2013) Magnetic characterization of FeCo nanowire arrays by first-order reversal curves. Curr Appl Phys 13:664–669

    Article  Google Scholar 

  32. Gilbert DA, Zimanyi GT, Dumas RK, Winklhofer M, Gomez A, Eibagi N, Vicent JL, Liu K (2014) Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves. Sci Rep 4:4204. doi:10.1038/srep04204

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Institute of Nanoscience and Nanotechnology of University of Kashan is highly acknowledged for providing financial support to undertake this work by Grant No. (159271/47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sima Alikhanzadeh-Arani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokarian, M.H., Almasi-kashi, M., Alikhanzadeh-Arani, S. et al. The fcc/bcc phase transition in FexNi100−x nanoparticles resolved by first-order reversal curves. J Mater Sci 52, 7831–7842 (2017). https://doi.org/10.1007/s10853-017-1025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1025-6

Keywords

Navigation