Skip to main content
Log in

Phase-field modeling of eutectic structures on the nanoscale: the effect of anisotropy

  • Eutectics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple phase-field model is used to address anisotropic eutectic freezing on the nanoscale in two (2D) and three dimensions (3D). Comparing parameter-free simulations with experiments, it is demonstrated that the employed model can be made quantitative for Ag–Cu. Next, we explore the effect of material properties and the conditions of freezing on the eutectic pattern. We find that the anisotropies of kinetic coefficient and the interfacial free energies (solid–liquid and solid–solid), the crystal misorientation relative to pulling, the lateral temperature gradient play essential roles in determining the eutectic pattern. Finally, we explore eutectic morphologies, which form when one of the solid phases are faceted, and investigate cases, in which the kinetic anisotropy for the two solid phases is drastically different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. He G, Eckert J, Löser W, Schultz L (2003) Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nat Mater 2:33–37

    Article  Google Scholar 

  2. Louzguine DV, Kato H, Inoue A (2004) High-strength hypereutectic Ti–Fe–Co bulk alloy with good ductility. Philos Mag Lett 84:359–364

    Article  Google Scholar 

  3. Park JM, Kim DH, Kim KB, Kim WT (2007) Deformation-induced rotational eutectic colonies containing length-scale heterogeneity in an ultrafine eutectic Fe83 Ti7 Zr6 B4 alloy. Appl Phys Lett 91:131907–1–131907–3

    Google Scholar 

  4. Park JM, Mattern N, Kühn U, Eckert J, Kim KB, Kim WT, Chattopadhyay K, Kim DH (2009) High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity. J Mater Res 24:2605–2609

    Article  Google Scholar 

  5. Samal S, Biswas K (2013) Novel high-strength NiCuCoTiTa alloy with plasticity. J Nanopart Res 15:1783-1–1783-11

    Article  Google Scholar 

  6. Pawlak DA, Kolodziejak K, Turczynski S, Kisielewski J, Rozniatowski K, Diduszko R, Kaczkan M, Malinowski M (2006) Self-organized, rodlike, micrometer-scale micro-structure of Tb3Sc2Al3O12–TbScO3: Pr eutectic. Chem Mater 18:2450–2457

    Article  Google Scholar 

  7. Pawlak DA, Kolodziejak K, Diduszko R, Rozniatowski K, Kaczkan M, Malinowski M, Kisielewski J, Lukasiewicz T (2007) The PrAlO3–Pr2O3 eutectic, its microstructure, instability, and luminescent properties. Chem Mater 19:2195–2202

    Article  Google Scholar 

  8. Pawlak DA, Kolodziejak K, Rozniatowski K, Diduszko R, Kaczkan M, Malinowski M, Piersa M, Kisielewski J, Lukasiewicz T (2008) PrAlO3–PrAl11O18 eutectic: its microstructure and spectroscopic properties. Cryst Growth Des 8:1243–1249

    Article  Google Scholar 

  9. Pawlak DA, Turczynski S, Gajc M, Kolodziejak K, Diduszko R, Rozniatowski K, Smalc J, Vendik I (2010) Metamaterials: How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry. Adv Funct Mater 20:1116–1124

    Article  Google Scholar 

  10. Sadecka K, Gajc M, Orlinski K, Surma HB, Klos A, Joywik-Biala I, Sobczak K, Dluyewski P, Toudert J, Pawlak DA (2015) When eutectics meet plasmonics: nanoplasmonic, volumetric, self-organized, silver-based eutectic. Adv Opt Mater 3:381–389

    Article  Google Scholar 

  11. Kolodziejak K, Gajc M, Rozniatowski K, Diduszko R, Pawlak DA (2016) Synthesis and structural study of a self-organized MnTiO3–TiO2 eutectic. J. Alloys Compd 659:152–158

    Article  Google Scholar 

  12. Merino RI, Acosta MF, Orera VM (2012) New polaritonic materials in the THz range made of directionally solidified halide eutectics. J Eur Ceram Soc 34:2061–2069

    Article  Google Scholar 

  13. Pawlak DA (2008–2012) EU FP7 Collaborative Project ENSEMBLE, CF-FP 213669, Grant Agreement, Annex I. http://cordis.europa.eu/result/rcn/56818_en.html

  14. Oliete PB, Peña JI, Larrea A, Orera VM, Lorca JL, Pastor JY, Martín A, Segurado J (2007) Ultra-high-strength nanofibrillar Al2O3–YAG–YSZ eutectics. Adv Mater 19:2313–2318

    Article  Google Scholar 

  15. Orera VM, Merino RI, Pardo JA, Larrea A, de la Fuente G, Contreras L, Peña JI (2000) Oxide eutectics: role of interfaces in the material properties. Acta Phys Slovaca 50:549–557

    Google Scholar 

  16. Pastor Y, Martin A, Molina-Aldareguia JM, Llorca J, Oliete PB, Larrea A, Peña JI, Orera VM, Arenal R (2013) Superplastic deformation of directionally solidified nanofibrillar Al2O3–Y3Al5O12–ZrO2 eutectics. J Eur Ceram Soc 33:2579–2586

    Article  Google Scholar 

  17. Fullman RL, Wood DJ (1954) Origin of spiral eutectic structures. Acta Metall 2:188–193

    Article  Google Scholar 

  18. Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17:073001-1–073001-31

    Article  Google Scholar 

  19. Nestler B, Choudhury A (2011) Phase-field modeling of multi-component systems. Curr Opin Solid State and Mater Sci 15:93–105

    Article  Google Scholar 

  20. Akamatsu S, Plapp M (2016) Eutectic and peritectic solidification patterns. Curr Opin Solid State and Mater Sci 20:46–54

    Article  Google Scholar 

  21. Boettinger WJ (2016) The solidification of multicomponent alloys. J Phase Equilib Diffus 37:4–18

    Article  Google Scholar 

  22. Akamatsu S, Bottin-Rousseau S, Serefoglu M, Faivre G (2012) A theory of thin lamellar eutectic growth with anisotropic interphase boundaries. Acta Mater 60:3199–3205

    Article  Google Scholar 

  23. Akamatsu S, Bottin-Rousseau S, Serefoglu M, Faivre G (2012) Lamellar eutectic growth with anisotropic interphase boundaries experimental study using the rotating directional solidification method. Acta Mater 60:3206–3214

    Article  Google Scholar 

  24. Ghosh S, Choudhury A, Plapp M, Bottin-Rousseau S, Faivre G, Akamatsu S (2015) Interphase anisotropy effects on lamellar eutectics: a numerical study. Phys Rev E 91:022407–1–022407–13

    Google Scholar 

  25. Lahiri A, Choudhury A (2015) Effect of surface energy anisotropy on the stability of growth fronts in multiphase alloys. Trans Indian Inst Met 68:1053–1057

    Article  Google Scholar 

  26. Rátkai L, Szállás A, Pusztai T, Mohri T, Gránásy L (2015) Ternary eutectic dendrites: pattern formation and scaling properties. J Chem Phys 142:154501–1–154501–11

    Article  Google Scholar 

  27. Llorca J, Orera V (2006) Directionally solidified eutectic ceramic oxides. Prog Mater Sci 51:711–809

    Article  Google Scholar 

  28. Karma A (2001) Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87:115701–1–115701–4

    Google Scholar 

  29. Echebarria B, Folch R, Karma A, Plapp M (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 73:061604–1–061604–22

    Google Scholar 

  30. Hötzer J, Jainta M, Steinmetz P, Nestler B, Dennstedt A, Genau A, Bauer M, Köstler H, Rüde U (2015) Large scale phase-field simulations of directional ternary eutectic solidification. Acta Mater 93:194–204

    Article  Google Scholar 

  31. Folch R, Plapp M (2005) Quantitative phase-field modeling of two-phase growth. Phys Rev E 72:011602–1–011602–27

    Google Scholar 

  32. Kim SG (2007) A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties. Acta Mater 55:4391–4399

    Article  Google Scholar 

  33. Gránásy L, Börzsönyi T, Pusztai T (2002) Nucleation and bulk crystallization in binary phase field theory. Phys Rev Lett 88:206105–1–206105–4

    Article  Google Scholar 

  34. Warren JA, Boettinger WJ (1995) Prediction of dendritc growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall Mater 43:689–703

    Article  Google Scholar 

  35. Levitas VI, Warren JA (2016) Phase field approach with anisotropic interface energy and interface stresses: large strain formulation. J Mech Phys Solids 91:94–125

    Article  Google Scholar 

  36. Hoyt JJ, Asta M, Karma A (2003) Atomistic and continuum modeling of dendritic solidification. Mater Sci Eng R 41:121–163

    Article  Google Scholar 

  37. Gránásy L, Pusztai T, Warren JA, Douglas JF, Börzsönyi T, Ferreiro V (2003) Growth of ‘dizzy dendrites’ in a random field of foreign particles. Nat Mater 2:92–96

    Article  Google Scholar 

  38. Gránásy L, Pusztai T, Börzsönyi T, Warren JA, Douglas JF (2004) A general mechanism of polycrystalline growth. Nat Mater 3:645–650

    Article  Google Scholar 

  39. Haxhimali T, Karma A, Gonzales F, Rappaz M (2006) Orientation selection in dendritic evolution. Nat Mater 5:660–664

    Article  Google Scholar 

  40. Davidchack R, Laird BB (2005) Direct calculation of the crystal-melt interfacial free energy via molecular dynamics computer simulation. J Phys Chem B 109:17802–17812

    Article  Google Scholar 

  41. Hoyt JJ, Asta M, Karma A (2001) Method for computing the anisotropy of the solid-liquid interfacial free energy. Phys Rev Lett 86:5530–5533

    Article  Google Scholar 

  42. Majaniemi S, Provatas N (2009) Deriving surface-energy anisotropy for phenomenological phase-field models of solidification. Phys Rev E 79:011607–1–011607–12

    Article  Google Scholar 

  43. Hartel A, Oettel M, Rozas RE, Egelhaff SU, Horbach J, Löwen H (2012) Tension and stiffness of the hard sphere crystal-fluid interface. Phys Rev Lett 108:226101–1–226101–4

    Article  Google Scholar 

  44. Podmaniczky F, Tóth GI, Pusztai T, Gránásy L (2014) Free energy of the bcc-liquid interface and the Wulff shape as predicted by the phase-field crystal model. J Cryst Growth 385:148–153

    Article  Google Scholar 

  45. Tegze G, Bansel G, Tóth GI, Pusztai T, Fan Z, Gránásy L (2009) Advanced operator-splitting-based semi-implicit spectral method to solve the binary phase-field crystal equation with variable coefficients. J Comput Phys 228:1612–1623

    Article  Google Scholar 

  46. Andersson JO, Helander T, Höglund L, Shi PF, Sundman B (2002) Thermo-Calc and DICTRA, computational tools for materials science. Calphad 26:273–312. Thermo-Calc Software, http://www.thermocalc.com/

  47. Gránásy L, Tegze M (1991) Crystal-melt interfacial free energy of elements and alloys. Mater Sci Forum 77:243–256

    Article  Google Scholar 

  48. Singman CN (1984) Atomic volume and allotropy of the elements. J Chem Educ 61:137–142

    Article  Google Scholar 

  49. Cline HE, Lee D (1970) Strengthening of lamellar versus equiaxed Ag–Cu eutectic. Acta Metall 18:315–323

    Article  Google Scholar 

  50. Jackson KA, Hunt JD (1966) Lamellar and rod eutectic growth. Trans Metall Soc AIME 236:1129–1142

    Google Scholar 

  51. Galenko PK, Herlach DM (2006) Diffusionless crystal growth in rapidly solidifying eutectic systems. Phys Rev Lett 96:150602–1–150602–4

    Article  Google Scholar 

  52. Kobayashi R, Giga Y (2001) On anisotropy and curvature effects for growing crystals. Jpn J Ind Appl Math 18:207–230

    Article  Google Scholar 

  53. Jackson KA, Hunt JD (2011) Eutectic solidification in transparent materials, in Jackson KA Crystal Growth (video). Jackson KA (2011) Personal communication

  54. Wang N, Trivedi R (2011) Limit of steady-state lamellar eutectic growth. Scr Mater 64:848–851

    Article  Google Scholar 

  55. Perrut M, Parisi A, Akamatsu S, Botin-Rousseau S, Faivre G, Plapp M (2010) Role of transverse temperature gradients in the generation of lamellar eutectic solidification patterns. Acta Mater 58:1761–1769

    Article  Google Scholar 

  56. Akamatsu S, Perrut M, Bottin-Rousseau S, Faivre G (2010) Spiral two-phase dendrites. Phys Rev Lett 104:056101–1–056101–4

    Article  Google Scholar 

  57. Pusztai T, Rátkai L, Szállás A, Gránásy L (2013) Spiraling eutectic dendrites. Phys Rev E 87:032401–1–032401–4

    Article  Google Scholar 

  58. Akamatsu S, Perrut M, Bottin-Rousseau S, Brener EA (2014) Scaling theory of two-phase dendritic growth in undercooled ternary melts. Phys Rev Lett 112:105502–1–105502–4

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Agency for Research, Development, and Innovation (NKFIH), Hungary under contract OTKA-K-115959, and by the EU FP7 EU FP7 projects “ENSEMBLE” (Grant Agreement NMP4-SL-2008-213669) and “EXOMET” (contract No. NMP-LA-2012-280421, co-funded by ESA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to László Rátkai or László Gránásy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rátkai, L., Tóth, G.I., Környei, L. et al. Phase-field modeling of eutectic structures on the nanoscale: the effect of anisotropy. J Mater Sci 52, 5544–5558 (2017). https://doi.org/10.1007/s10853-017-0853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0853-8

Keywords

Navigation