Skip to main content
Log in

A facile hydrothermal reflux synthesis of Ni(OH)2/GF electrode for supercapacitor application

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ni(OH)2/graphene foam (GF) electrode was synthesized for electrochemical application by a facile hydrothermal reflux technique. The results obtained from the scanning electron microscopy showed that the Ni(OH)2 spheres successfully coated the entire surface area of the GF. Specific capacitance of 2420 F g−1 at a current density of 1 A g−1 was obtained for Ni(OH)2/GF composite electrode, as well as a capacitance retention of ~93 % after 1000 charge–discharge cycles, demonstrating excellent cycle stability in 6.0 M KOH electrolyte. These results suggest that the composite could be a potential active material for high-performance electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hu L, Yu Z, Hu Z, Song Y, Zhang F, Zhu H, Jiao S (2015) Facile synthesis of amorphous Ni(OH)2 for high-performance supercapacitors via electrochemical assembly in a reverse micelle. Electrochim Acta 174:273–281

    Article  Google Scholar 

  2. Zhu G, Xi C, Shen M, Bao C, Zhu J (2014) Nanosheet-based hierarchical Ni2(CO3)(OH2) microspheres with weak crystallinity for high-performance supercapacitor. ACS Appl Mater Interfaces 6:17208–17214

    Article  Google Scholar 

  3. Zhou W, Cao X, Zeng Z, Shi W, Zhu Y, Yan Q, Liu H, Wang J, Zhang H (2013) One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci 6:2216–2221

    Article  Google Scholar 

  4. Liu Y, Wang R, Yan X (2015) Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci Rep 5:11095

    Article  Google Scholar 

  5. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816

    Google Scholar 

  6. Jiang C, Zhao B, Cheng J, Li J, Zhang H, Tang Z, Yang J (2015) Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochim Acta 173:399–407

    Article  Google Scholar 

  7. Wu X, Xu A (2014) Carbonaceous hydrogels and aerogels for supercapacitors. J Mater Chem A 2:4852–4864

    Article  Google Scholar 

  8. Yan H, Bai J, Wang J, Zhang X, Wang B, Liu Q, Liu L (2013) Graphene homogeneously anchored with Ni(OH)2 nanoparticles as advanced supercapacitor electrodes. CrystEngComm 15:10007–10015

    Article  Google Scholar 

  9. Yang S, Gong Y, Liu Z, Zhan L, Hashim DP, Ma L, Vajtai R, Ajayan PM (2013) Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett 13:1596–1601

    Google Scholar 

  10. Guo Y, Hu J, Wan L (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  Google Scholar 

  11. Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan M, Ozkan CS (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4:4452

    Google Scholar 

  12. Ji J, Zhang L, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Rouff RS (2013) Nanoporous Ni (OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243

    Article  Google Scholar 

  13. Min S, Zhao C, Chen G, Qian X (2014) One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochim Acta 115:155–164

    Article  Google Scholar 

  14. Yan J, Sun W, Wei T, Zhang Q, Zhang Q, Wei F (2012) Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J Mater Chem 22:11494–11502

    Article  Google Scholar 

  15. Sun S, Lang J, Wang R, Kong L, Li X, Yan X (2014) Identifying pseudocapacitance of Fe2O3 in an ionic liquid and its application in asymmetric supercapacitors. J Mater Chem A 2:14550–14556

    Article  Google Scholar 

  16. Wu LC, Chen YJ, Mao ML, Li QH, Zhang M (2014) Facile synthesis of spike-piece-structured Ni(OH)2 interlayer nanoplates on nickel foam as advanced pseudocapacitive materials for energy storage. ACS Appl Mater Interfaces 6:5168–5174

    Article  Google Scholar 

  17. Dubal DP, Gund GS, Lokhande CD, Holze R (2013) Decoration of spongelike Ni(OH)2 nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors. ACS Appl Mater Interfaces 5:2446–2454

    Article  Google Scholar 

  18. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477

    Article  Google Scholar 

  19. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  Google Scholar 

  20. Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park MB, Zhang H, Wang L-H, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213

    Article  Google Scholar 

  21. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428

    Article  Google Scholar 

  22. Liu YF, Yuan GH, Jiang ZH, Yao ZP, Yue M (2015) Preparation of Ni(OH)2-graphene sheet-carbon nanotube composite as electrode material for supercapacitors. J Alloys Compd 618:37–43

    Article  Google Scholar 

  23. Gu L, Wang Y, Lu R, Wang W, Peng X, Sha J (2015) Silicon carbide nanowires@ Ni(OH)2 core–shell structures on carbon fabric for supercapacitor electrodes with excellent rate capability. J Power Sources 273:479–485

    Article  Google Scholar 

  24. Patil UM, Lee SC, Sohn JS, Kulkarni SV, Guravb KV, Kimb JH, Kimc JH, Leec S, Jun SC (2014) Enhanced symmetric supercapacitive performance of Co(OH)2 nanorods decorated conducting porous graphene foam electrodes. Electrochim Acta 129:334–342

    Article  Google Scholar 

  25. Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI, Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48:6707–6712

    Article  Google Scholar 

  26. Ferrari A (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  Google Scholar 

  27. Cai F-S, Zhang G-Y, Chen J, Gou X-L, Liu H-K, Dou S-X (2004) Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries. Angew Chem Int Ed Engl 43:4212–4216

    Article  Google Scholar 

  28. Jiang H, Zhao T, Li C, Ma J (2011) Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21:3818–3823

    Article  Google Scholar 

  29. Chae SJ, Gunes F, Kim KK, Kim ES, Han GH, Kim SM, Shin H-J, Yoon S-M, Choi J-Y, Park MH, Yang CW, Pribat D, Lee YG (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328–2333

    Article  Google Scholar 

  30. Lee J, Ahn T, Soundararajan D (2011) Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem Commun 47:6305–6307

    Article  Google Scholar 

  31. Bragg WL (1913) The diffraction of short electromagnetic waves by a crystal. In: Proceedings of the Cambridge Philosophical Society, pp 43–57

  32. Momodu D, Barzegar F, Bello A, Dangbegnon J, Masikhwa T, Madito J, Manyala N (2015) Simonkolleite-graphene foam composites and their superior electrochemical performance. Electrochim Acta 151:591–598

    Article  Google Scholar 

  33. Yang S, Wu X, Chen C, Dong H, Hu W, Wang X (2012) Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem Commun 48:2773–2775

    Article  Google Scholar 

  34. Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998

    Article  Google Scholar 

  35. Xu L, Ding Y, Chen C, Zhao L (2007) 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chem Mater 20:308–316

    Article  Google Scholar 

  36. Tessier C, Guerlou-Demourgues L (2000) Structural study of zinc-substituted nickel hydroxides. J Mater Chem 10:1185–1193

    Article  Google Scholar 

  37. Ren Y, Gao L (2010) From three-dimensional flower-like α-Ni(OH)2 nanostructures to hierarchical porous NiO nanoflowers: microwave-assisted fabrication and supercapacitor properties. J Am Ceram Soc 93:3560–3564

    Article  Google Scholar 

  38. Liu X, Yu L (2004) Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Mater Lett 58:1327–1330

    Article  Google Scholar 

  39. Han D, Xu P, Jing X, Wanga J, Yang P, Shen Q, Liu J, Song D, Gao Z, Zhang M (2013) Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J Power Sources 235:45–53

    Article  Google Scholar 

  40. Cheng H, Su A, Li S, Nguyen ST, Lu L, Lim CYH, Duong HM (2014) Facile synthesis and advanced performance of Ni(OH)2/CNTs nanoflake composites on supercapacitor applications. Chem Phys Lett 601:168–173

    Article  Google Scholar 

  41. Lee JW, Ahn T, Kim JH, Ko JM, Kim J-D (2011) Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim Acta 56:4849–4857

    Article  Google Scholar 

  42. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Sci Mag 343:1210–1211

    Google Scholar 

  43. Yang W, Gao Z, Wang J, Ma J, Zhang M, Liu L (2013) Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl Mater Interfaces 5:5443–5454

    Article  Google Scholar 

  44. Wang B, Liu Q, Qian Z, Zhang X, Wang J, Li Z, Yan H, Gao Z, Zhao F, Liu L (2014) Two steps in situ structure fabrication of Ni–Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. J Power Sources 246:747–753

    Article  Google Scholar 

  45. Wang L, Li X, Guo T, Yan X, Tay BK (2014) Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. Int J Hydrogen Energy 39:7876–7884

    Article  Google Scholar 

  46. Fan Z, Yan J, Wei T, Zhi L (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:366–2375

    Article  Google Scholar 

  47. Yuan C, Zhang X, Su L, Gao B, Shen L (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19:5772–5777

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on the research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa (Grant No. 97994). Any opinion, finding and conclusion or recommendation expressed in this material is that of the author(s) and the NRF does not accept any liability in this regard. A. A. Khaleed acknowledges financial support from University of Pretoria and the NRF through SARChI in Carbon Technology and Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Manyala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleed, A.A., Bello, A., Dangbegnon, J.K. et al. A facile hydrothermal reflux synthesis of Ni(OH)2/GF electrode for supercapacitor application. J Mater Sci 51, 6041–6050 (2016). https://doi.org/10.1007/s10853-016-9910-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9910-y

Keywords

Navigation