Skip to main content

Advertisement

Log in

Ni3S2@polypyrrole composite supported on nickel foam with improved rate capability and cycling durability for asymmetric supercapacitor device applications

  • Batteries and Supercapacitors
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ni3S2@polypyrrole/nickel foam (Ni3S2@PPy/NF) composite was successfully synthesized by combining a facile hydrothermal synthesis and a simple electrochemical-deposited process. For comparative study, the honeycomb-shaped Ni3S2 had in situ been grown on NF without the addition of any nickel salt to obtain the Ni3S2/NF composite. The electrochemical measurement results show that the area capacitance of the Ni3S2@PPy/NF electrode is 1.13 F cm−2 that is slightly lower than 1.26 F cm−2 of the Ni3S2/NF electrode at a high current density of 30 mA cm−2, yet its rate capability and cycling stability are far better than those of the Ni3S2/NF electrode. Meanwhile, an asymmetric supercapacitor on the basis of the Ni3S2@PPy/NF anode and the AC cathode exhibits a high energy density and power density of 17.54 Wh kg−1 and 179.33 W kg−1 at 2.5 mA cm−2, respectively; besides, the energy density is still 8.67 Wh kg−1 at a power density of 3587.41 W kg−1 even at 50 mA cm−2. Moreover, the capacitances of the device remain unchanged after 3000 galvanostatic charge/discharge cycles at a high current density of 30 mA cm−2. Furthermore, two such 1 cm2 devices connected in series can light five 40-mW LED indicators or power one of the same-power LED indicator for 20 min after being fully charged. The results demonstrate that our asymmetric supercapacitor has a promising potential in commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lu XH, Yu MH, Wang GM, Zhai T, Xie SL, Ling YC, Tong YX, Li Y (2013) H-TiO2@MnO2//H-TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater 25:267–272

    Article  Google Scholar 

  2. Yuan LY, Xiao X, Ding TP, Zhong JW, Zhang XH, Shen Y, Hu B, Huang YH, Zhou J, Wang ZL (2012) Paper-based supercapacitors for self-powered nanosystems. Angew Chem Int Ed 51:4934–4938

    Article  Google Scholar 

  3. Liu JP, Jiang J, Cheng CW, Li HX, Zhang JX, Gong H, Fan HJ (2011) Co3O4 Nanowire@MnO2 ultrathin nanosheet core/shell arrays. Adv Mater 23:2076–2081

    Article  Google Scholar 

  4. Chang J, Jin MH, Yao F, Kim TH, Le VT, Yue HY, Gunes F, Li B, Ghosh A, Xie SH, Lee YH (2013) Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23:5074–5083

    Article  Google Scholar 

  5. Jeong HK, Jin MH, Ra EJ, Sheem KY, Han GH, Arepalli S, Lee YH (2010) Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability. ACSNANO 4:1162–1166

    Google Scholar 

  6. Gao S, Sun YF, Lei FC, Liang L, Liu JW, Bi WT, Pan BC, Xie Y (2014) Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew Chem Int Ed 53:12789–12793

    Article  Google Scholar 

  7. Bai MH, Bian LJ, Song Y, Liu XX (2014) Electrochemical codeposition of vanadium oxide and polypyrrole for high-performance supercapacitor with high working voltage. ACS Appl Mater Interfaces 6:12656–12664

    Article  Google Scholar 

  8. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  Google Scholar 

  9. Wang JG, Yang Y, Huang ZH, Kang FY (2013) A high-performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes. Carbon 61:190–199

    Article  Google Scholar 

  10. Sun GZ, Zhang X, Lin RZ, Yang J, Zhang H, Chen P (2015) Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew Chem Int Ed 54:4651–4656

    Article  Google Scholar 

  11. Lu XH, Zeng YX, Yu MH, Zhai T, Liang CL, Xie SL, Balogun MS, Tong YX (2014) Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 26:3148–3155

    Article  Google Scholar 

  12. Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  Google Scholar 

  13. Lin HL, Liu F, Wang XJ, Ai YN, Yao ZQ, Chu L, Han S, Zhuang XD (2016) Graphene-coupled flower-like Ni3S2 for a free-standing 3D aerogel with an ultra-high electrochemical capacity. Electrochim Acta 191:705–715

    Article  Google Scholar 

  14. Xie K, Qin XT, Wang XZ, Wang YN, Tao HS, Wu Q, Yang LJ, Hu Z (2012) Carbon nanocages as supercapacitor electrode materials. Adv Mater 24:347–352

    Article  Google Scholar 

  15. Zhuang XD, Zhang F, Wu DQ, Forler N, Liang HW, Manfred Wagner, Gehrig D, Hansen MR, Laquai F, Feng XL (2013) Two-dimensional sandwich-type, graphene-based conjugated microporous polymers. Angew Chem Int Ed 52:9668–9672

    Article  Google Scholar 

  16. Zhuang XD, Zhang F, Wu DQ, Feng XL (2014) Graphene coupled schiff-base porous polymers: towards nitrogen-enriched porous carbon nanosheets with ultrahigh electrochemical capacity. Adv Mater 26:3081–3086

    Article  Google Scholar 

  17. Zhuang XD, Feng XL (2016) Silicon-compatible carbon-based micro-supercapacitors. Angew Chem Int Ed 55:6136–6138

    Article  Google Scholar 

  18. Qiu YF, Cheng ZY, Guo B, Fan HB, Sun SF, Wu T (2014) Preparation of activated carbon paper through a simple method and application as a supercapacitor. J Mater Sci 50:1586–1593. doi:10.1007/s10853-014-8719-9

    Article  Google Scholar 

  19. Chen AB, Yu YF, Xing TT, Wang RJ, Zhang Y, Li Q (2015) Synthesis of graphitic carbon spheres for enhanced supercapacitor performance. J Mater Sci 50:5578–5582. doi:10.1007/s10853-015-9106-x

    Article  Google Scholar 

  20. Huang KJ, Wang L, Liu YJ, Wang HB, Liu YM, Wang LL (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594

    Article  Google Scholar 

  21. Zhao WX, Hou ZS, Yao ZQ, Zhuang XD, Zhang F, Feng XL (2015) Hypercrosslinked porous polymer nanosheets: 2D RAFT agent directed emulsion polymerization for multifunctional applications. Polym Chem 6:7171–7178

    Article  Google Scholar 

  22. Zhuang XD, Zhao WX, Zhang F, Cao Y, Liu F, Bi S, Feng XL (2016) A two-dimensional conjugated polymer framework with fully sp 2-bonded carbon skeleton. Polym Chem 7:4176–4181

    Article  Google Scholar 

  23. Padwal PM, Kadam SL, Mane SM, Kulkarni SB (2016) Enhanced specific capacitance and supercapacitive properties of polyaniline–iron oxide (PANI–Fe2O3) composite electrode material. J Mater Sci 51:10499–10505. doi:10.1007/s10853-016-0270-4

    Article  Google Scholar 

  24. Huang HB, Yao JL, Chen HY, Zeng XQ, Chen CL, She X, Li L (2016) Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance. J Mater Sci 51:4047–4054. doi:10.1007/s10853-016-9724-y

    Article  Google Scholar 

  25. Yang JQ, Duan XC, Qin Q, Zheng WJ (2013) Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J Mater Chem A 1:7880–7884

    Article  Google Scholar 

  26. Zhu XJ, Dai HL, Hu J, Ding L, Jiang L (2012) Reduced graphene oxide–nickel oxide composite as high performance electrode materials for supercapacitors. J Power Sources 203:243–249

    Article  Google Scholar 

  27. Jagadale AD, Jamadade VS, Pusawale SN, Lokhande CD (2012) Effect of scan rate on the morphology of potentiodynamically deposited β-Co(OH)2 and corresponding supercapacitive performance. Electrochim Acta 78:92–97

    Article  Google Scholar 

  28. Lee SH, Kwon YT, Park SY, Cho M, Lee YK (2015) Facile synthesis of MnCO3 nanoparticles by supercritical CO2 and their conversion to manganese oxide for supercapacitor electrode materials. J Mater Sci 50:5952–5959. doi:10.1007/s10853-015-9133-7

    Article  Google Scholar 

  29. Ke QR, Liao YY, Yao S, Song LZ, Xiong XP (2015) A three-dimensional TiO2/graphene porous composite with nano-carbon deposition for supercapacitor. J Mater Sci 51:2008–2016. doi:10.1007/s10853-015-9510-2

    Article  Google Scholar 

  30. Huo HH, Zhao YQ, Xu CL (2014) 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J Mater Chem A 2:15111–15117

    Article  Google Scholar 

  31. Xie LJ, Wu JF, Chen CM, Zhang CM, Wan L, Wang JL, Kong QQ, Lv CX, Li KX, Sun GH (2013) A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide–cobalt oxide nanocomposite anode. J Power Sources 242:148–156

    Article  Google Scholar 

  32. Wu JH, Ouyang CB, Dou S, Wang SY (2015) Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors. Nanotechnology 26:325401

    Article  Google Scholar 

  33. Sun CC, Ma MZ, Yang J, Zhang YF, Chen P, Huang W, Dong XC (2014) Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Sci Rep 4:7054

    Article  Google Scholar 

  34. Zhou WJ, Cao XH, Zeng ZY, Shi WH, Zhu YY, Yan QY, Liu H, Wang JY, Zhang H (2013) One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci 6:2216–2221

    Article  Google Scholar 

  35. Ou XW, Gan L, Luo ZT (2014) Graphene-templated growth of hollow Ni3S2 nanoparticles with enhanced pseudocapacitive performance. J Mater Chem A 2:19214–19220

    Article  Google Scholar 

  36. Chen HC, Jiang JJ, Zhang L, Xia DD, Zhao YD, Guo DQ, Qi T, Wan HZ (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257

    Article  Google Scholar 

  37. Sun M, Tie JJ, Cheng G, Lin T, Peng SM, Deng FZ, Ye F, Yu L (2015) In situ growth of burl-like nickel cobalt sulfide on carbon fibers as high-performance supercapacitors. J Mater Chem A 3:1730–1736

    Article  Google Scholar 

  38. De la Fuente Salas IM, Sudhakar YN, Selvakumar M (2014) High performance of symmetrical supercapacitor based on multilayer films of graphene oxide/polypyrrole electrodes. Appl Surf Sci 296:195–203

    Article  Google Scholar 

  39. Bose S, Kim NH, Kuila T, Lau KT, Lee JH (2011) Electrochemical performance of a graphene–polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology 22:369502

    Article  Google Scholar 

  40. Li X, Zhitomirsky I (2013) Electrodeposition of polypyrrole–carbon nanotube composites for electrochemical supercapacitors. J Power Sources 221:49–56

    Article  Google Scholar 

  41. Han LJ, Tang PY, Zhang L (2014) Hierarchical Co3O4@PPy@MnO2 core–shell–shell nanowire arrays for enhanced electrochemical energy storage. Nano Energy 7:42–51

    Article  Google Scholar 

  42. Tang CH, Yin XS, Gong H (2013) Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core–shell electrode. ACS Appl Mater Interfaces 5:10574–10582

    Article  Google Scholar 

  43. Niu LY, Li ZP, Xu Y, Sun JF, Hong W, Liu XH, Wang JQ, Yang SR (2013) Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl Mater Interfaces 5:8044–8052

    Article  Google Scholar 

  44. Zhu GX, Xi CY, Shen MQ, Bao CL, Zhu J (2014) Nanosheet-based hierarchical Ni2(CO3)(OH)2 microspheres with weak crystallinity for high-performance supercapacitor. ACS Appl Mater Interfaces 6:17208–17214

    Article  Google Scholar 

  45. Wang YM, Zhao DD, Zhao YQ, Xu CL, Li HL (2012) Effect of electrodeposition temperature on the electrochemical performance of a Ni(OH)2 electrode. RSC Adv 2:1074–1082

    Article  Google Scholar 

  46. Xing ZC, Chu QX, Ren XB, Ge CJ, Qusti AH, Asiri AM, Al-Youbi AO, Sun XP (2014) Ni3S2 coated ZnO array for high-performance supercapacitors. J Power Sources 245:463–467

    Article  Google Scholar 

  47. Long L, Fu WD, Yan ML, Yao YD, Wang HJ, Wang M, Liao XM, Yin GF, Huang ZB (2015) A high-performance asymmetric supercapacitor based on a directly grown nickel bicarbonate/nickel foam composite. Electrochim Acta 180:330–338

    Article  Google Scholar 

  48. Sun JF, Li ZP, Wang JQ, Wang ZF, Niu LY, Gong PW, Liu XH, Wang HG, Yang SR (2013) Solvothermal synthesis of Ni(HCO3)2/graphene composites toward supercapacitors and the faradiac redox mechanism in KOH solution. J Alloys Compd 581:217–222

    Article  Google Scholar 

  49. Lang JW, Kong LB, Wu WJ, Luo YC, Kang L (2008) Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem Commun (Camb) 35:4213–4215

    Article  Google Scholar 

  50. Xiong W, Pan XX, Li Y, Chen XM, Zhu YF, Yang M, Zhang Y (2015) Hierarchical Co3O4@PPy core/shell nanowire arrays on nickel foam for electrochemical energy storage. Mater Lett 157:23–26

    Article  Google Scholar 

  51. Yan YN, Cheng G, Wang P, He DN, Chen R (2014) Facile hydrothermal selective fabrication of Ni(OH)2 and Ni(HCO3)2 nanoparticulates and their electrochemical performances. RSC Adv 4:49303–49307

    Article  Google Scholar 

  52. Huang Y, Li HF, Wang ZF, Zhu MS, Pei ZX, Xue Q, Huang Y, Zhi CY (2016) Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438

    Article  Google Scholar 

  53. Li R, Wang SL, Wang JP, Huang ZC (2015) Ni3S2@CoS core–shell nano-triangular pyramid arrays on Ni foam for high-performance supercapacitors. Phys Chem Chem Phys 17:16434–16442

    Article  Google Scholar 

  54. Cai DP, Liu B, Wang DD, Liu Y, Wang LL, Li H, Wang YR, Wang CX, Li QH, Wang TH (2014) Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors. Electrochim Acta 115:358–363

    Article  Google Scholar 

  55. Chen H, Zhou SX, Wu LM (2014) Porous nickel hydroxide–manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl Mater Interfaces 6:8621–8630

    Article  Google Scholar 

  56. Yang Q, Lu ZY, Sun XM, Liu JF (2013) Ultrathin Co3O4 nanosheet arrays with high supercapacitive performance. Sci Rep 3:3537

    Google Scholar 

  57. Peng YJ, Wu TH, Hsu CT, Li SM, Chen MG, Hu CC (2014) Electrochemical characteristics of the reduced graphene oxide/carbon nanotube/polypyrrole composites for aqueous asymmetric supercapacitors. J Power Sources 272:970–978

    Article  Google Scholar 

Download references

Acknowledgements

The support of the Sichuan Province through a Key Technologies Research and Development Program of Sichuan Province (2011 gz0110) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yadong Yao or Hongjing Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, L., Yao, Y., Yan, M. et al. Ni3S2@polypyrrole composite supported on nickel foam with improved rate capability and cycling durability for asymmetric supercapacitor device applications. J Mater Sci 52, 3642–3656 (2017). https://doi.org/10.1007/s10853-016-0529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0529-9

Keywords

Navigation