Skip to main content
Log in

Electrospun composite matrices from tenside-free poly(ε-caprolactone)-grafted acrylic acid/hydroxyapatite oil-in-water emulsions

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Composite matrices of poly(ε-caprolactone)-grafted acrylic acid (PCL-g-AA) and hydroxyapatite (HA) were prepared via electrospinning of oil-in-water emulsions. Grafting of varying amounts of AA on PCL was carried out in a twin-screw compounder using benzoyl peroxide as an initiator under inert atmosphere. A solution of PCL-g-AA in toluene, containing HA, comprised the oil phase of the emulsion, while the aqueous phase contained poly(vinyl alcohol) (PVA) as a template polymer. No emulsifier was used in making such emulsions which were found to be stable for more than a month at room temperature. Secondary interactions of AA group of PCL-g-AA with HA and PVA at the oil–water interface provided stability to the emulsion. Uniform composite fibrous matrices were produced from the resultant emulsions under controlled electrospinning conditions. The composite matrices, thus developed using minimal organic solvent, are free from emulsifiers and have high potential to be used in applications including tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256. doi:10.1016/j.progpolymsci.2010.04.002

    Article  Google Scholar 

  2. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543. doi:10.1016/S0142-9612(00)00121-6

    Article  Google Scholar 

  3. Bordes C, Fréville V, Ruffin E et al (2010) Determination of poly(ɛ-caprolactone) solubility parameters: application to solvent substitution in a microencapsulation process. Int J Pharm 383:236–243. doi:10.1016/j.ijpharm.2009.09.023

    Article  Google Scholar 

  4. Srivastava RK, Albertsson A-C (2006) Porous scaffolds from high molecular weight polyesters synthesized via enzyme-catalyzed ring-opening polymerization. Biomacromolecules 7:2531–2538. doi:10.1021/bm060309w

    Article  Google Scholar 

  5. Tang M, Purcell M, Steele JAM et al (2013) Porous copolymers of ε-caprolactone as scaffolds for tissue engineering. Macromolecules 46:8136–8143. doi:10.1021/ma401439z

    Article  Google Scholar 

  6. Hu Y, Gao H, Du Z et al (2015) Pickering high internal phase emulsion-based hydroxyapatite–poly(ε-caprolactone) nanocomposite scaffolds. J Mater Chem B 3:3848–3857. doi:10.1039/C5TB00093A

    Article  Google Scholar 

  7. Jiang T, Carbone EJ, Lo KW-H, Laurencin CT (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46:1–24. doi:10.1016/j.progpolymsci.2014.12.001

    Article  Google Scholar 

  8. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. doi:10.1016/S0266-3538(03)00178-7

    Article  Google Scholar 

  9. Zhang B, Kang F, Tarascon J-M, Kim J-K (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 76:319–380. doi:10.1016/j.pmatsci.2015.08.002

    Article  Google Scholar 

  10. Pampal ES, Stojanovska E, Simon B, Kilic A (2015) A review of nanofibrous structures in lithium ion batteries. J Power Sources 300:199–215. doi:10.1016/j.jpowsour.2015.09.059

    Article  Google Scholar 

  11. Cipitria A, Skelton A, Dargaville TR et al (2011) Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem 21:9419. doi:10.1039/c0jm04502k

    Article  Google Scholar 

  12. Luo CJ, Stride E, Edirisinghe M (2012) Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules 45:4669–4680. doi:10.1021/ma300656u

    Article  Google Scholar 

  13. Zhang YZ, Feng Y, Huang Z-M et al (2006) Fabrication of porous electrospun nanofibres. Nanotechnology 17:901–908. doi:10.1088/0957-4484/17/3/047

    Article  Google Scholar 

  14. Kai D, Liow SS, Loh XJ (2014) Biodegradable polymers for electrospinning: towards biomedical applications. Mater Sci Eng C 45:659–670. doi:10.1016/j.msec.2014.04.051

    Article  Google Scholar 

  15. Holzwarth JM, Ma PX (2011) Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 32:9622–9629. doi:10.1016/j.biomaterials.2011.09.009

    Article  Google Scholar 

  16. Chen J-P, Chang Y-S (2011) Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells. Colloids Surf B 86:169–175. doi:10.1016/j.colsurfb.2011.03.038

    Article  Google Scholar 

  17. Doustgani A, Vasheghani-Farahani E, Soleimani M, Hashemi-Najafabadi S (2012) Optimizing the mechanical properties of electrospun polycaprolactone and nanohydroxyapatite composite nanofibers. Compos Part B 43:1830–1836. doi:10.1016/j.compositesb.2012.01.051

    Article  Google Scholar 

  18. Khajavi R, Abbasipour M, Bahador A (2016) Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci. doi:10.1002/app.42883

    Google Scholar 

  19. Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, Supaphol P (2006) Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromol Biosci 6:70–77. doi:10.1002/mabi.200500150

    Article  Google Scholar 

  20. Agarwal S, Greiner A (2011) On the way to clean and safe electrospinning-green electrospinning: emulsion and suspension electrospinning. Polym Adv Technol 22:372–378. doi:10.1002/pat.1883

    Article  Google Scholar 

  21. Yarin AL (2011) Coaxial electrospinning and emulsion electrospinning of core–shell fibers. Polym Adv Technol 22:310–317. doi:10.1002/pat.1781

    Article  Google Scholar 

  22. Stoiljkovic A, Ishaque M, Justus U et al (2007) Preparation of water-stable submicron fibers from aqueous latex dispersion of water-insoluble polymers by electrospinning. Polymer 48:3974–3981. doi:10.1016/j.polymer.2007.04.050

    Article  Google Scholar 

  23. Bubel K, Zhang Y, Assem Y et al (2013) Tenside-free biodegradable polymer nanofiber nonwovens by “green electrospinning”. Macromolecules 46:7034–7042. doi:10.1021/ma401044s

    Article  Google Scholar 

  24. Pal J, Sharma S, Sanwaria S et al (2014) Conducive 3D porous mesh of poly(ε-caprolactone) made via emulsion electrospinning. Polymer 55:3970–3979. doi:10.1016/j.polymer.2014.06.067

    Article  Google Scholar 

  25. Pal J, Singh S, Sharma S et al (2016) Emulsion electrospun composite matrices of poly(ε-caprolactone)-hydroxyapatite: strategy for hydroxyapatite confinement and retention on fiber surface. Mater Lett 167:288–296. doi:10.1016/j.matlet.2015.12.164

    Article  Google Scholar 

  26. Buruaga L, Sardon H, Irusta L et al (2010) Electrospinning of waterborne polyurethanes. J Appl Polym Sci 115:1176–1179. doi:10.1002/app.31219

    Article  Google Scholar 

  27. Sun J, Bubel K, Chen F et al (2010) Nanofibers by green electrospinning of aqueous suspensions of biodegradable block copolyesters for applications in medicine, pharmacy and agriculture. Macromol Rapid Commun 31:2077–2083. doi:10.1002/marc.201000379

    Article  Google Scholar 

  28. Wang Y, Yang J-F (2010) Physical properties and biodegradation of acrylic acid grafted poly(ε-caprolactone)/chitosan blends. J Polym Res 17:221–232. doi:10.1007/s10965-009-9308-5

    Article  Google Scholar 

  29. Wu C-S (2005) A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer 46:147–155. doi:10.1016/j.polymer.2004.11.013

    Article  Google Scholar 

  30. Gaylord NG, Mehta R, Kumar V, Tazi M (1989) High density polyethylene-g-maleic anhydride preparation in presence of electron donors. J Appl Polym Sci 38:359–371. doi:10.1002/app.1989.070380217

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by The Swedish Foundation for International Cooperation in Research and Higher Education (STINT), Sweden (Grant No. IB2014-5638), and Department of Science and Technology (DST), India (Grant No. SR/S3/CE/050/2011) to perform this research. The authors also acknowledge the kind support provided by Ms. Haike Hilke in helping JP to conduct micro-compounding experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, J., Skrifvars, M., Nandan, B. et al. Electrospun composite matrices from tenside-free poly(ε-caprolactone)-grafted acrylic acid/hydroxyapatite oil-in-water emulsions. J Mater Sci 52, 2254–2262 (2017). https://doi.org/10.1007/s10853-016-0518-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0518-z

Keywords

Navigation