Skip to main content
Log in

Influence of CuO, MnO2, NiO, Bi2O3, and Fe2O3 modifiers on the crystalline structure and electrophysical properties of (Na,Li)NbO3 solid solutions

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solid solutions were obtained on the basis of (Na,Li)NbO3 binary system, modified by addition of minor amount (not greater than 5 wt%) of various elements’ monoxides, including their combinations. This study focuses on the peculiar features of their crystalline structure, grain structure, and thermal-frequency behavior of relative permittivity. The modifications by simple Mn and Cu oxides demonstrate a retention of crystalline structure of initial solid solution. Addition of NiO leads to transformation of phase state, which is stipulated by high stereochemistry activity and emission ability of Ni(II). A noticeable variation of phase state occurs also due to the combined modification by the above-mentioned oxides and Bi2O3+Fe2O3 ones. It is established that high-temperature anomalies of dielectric properties are related to partial reduction of niobium. It was also shown that the given modified lead-free solid solutions are characterized with improved piezoelectric, ferroelastic, and mechanical properties, and they can be applied in the field of microwave engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhang S, Xia R, Shrout TR (2007) Lead-free piezoelectric ceramics vs. PZT? J Electroceram 19:251–257. doi:10.1007/s10832-007-9056-z

    Article  Google Scholar 

  2. Lin D, Xiao D, Zhu J et al (2004) Synthesis and piezoelectric properties of lead-free piezoelectric [Bi0.5(Na1−x−yKxLiy)0.5]TiO3 ceramics. Mater Lett 58:615–618. doi:10.1016/S0167-577X(03)00580-9

    Article  Google Scholar 

  3. Guo Y, Kakimoto K, Ohsato H (2005) (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater Lett 59:241–244. doi:10.1016/j.matlet.2004.07.057

    Article  Google Scholar 

  4. Mitra S, Kulkarni AR, Prakash O (2013) Diffuse phase transition and electrical properties of lead-free piezoelectric (LixNa1−x)NbO3 (0.04 ≤ x ≤ 0.20) ceramics near morphotropic phase boundary. J Appl Phys 114:064106. doi:10.1063/1.4817815

    Article  Google Scholar 

  5. Li J-F, Wang K, Zhu F-Y et al (2013) (K,Na)NbO3—Based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96:3677–3696. doi:10.1111/jace.12715

    Article  Google Scholar 

  6. Kravchenko OY, Reznichenko LA, Gadzhiev GG et al (2008) Properties of Na0.875Li0.125NbO3 ceramics. Inorg Mater 44:1135–1150. doi:10.1134/S002016850810021X

    Article  Google Scholar 

  7. Directive 2011/65/EU of the European Parliament and of the Council (2011) on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off J Eur Union 54:88–110. doi:10.3000/17252555.L_2011.174.eng

    Google Scholar 

  8. Zhang S-T, Kounga AB, Aulbach E et al (2008) Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na 0.5NbO3. I. Structure and room temperature properties. J Appl Phys 103:034107. doi:10.1063/1.2838472

    Article  Google Scholar 

  9. Shen Z-Y, Zhen Y, Wang K, Li J-F (2009) Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-modified (Na,K)NbO3 ceramics. J Am Ceram Soc 92:1748–1752. doi:10.1111/j.1551-2916.2009.03128.x

    Article  Google Scholar 

  10. Lévêque G, Marchet P, Levassort F et al (2011) Lead free (Li, Na, K)(Nb, Ta, Sb)O3 piezoelectric ceramics: influence of sintering atmosphere and ZrO2 doping on densification, microstructure and piezoelectric properties. J Eur Ceram Soc 31:577–588. doi:10.1016/j.jeurceramsoc.2010.10.031

    Article  Google Scholar 

  11. Gao Y, Zhang J, Qing Y et al (2011) Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 ceramic. J Am Ceram Soc 94:2968–2973. doi:10.1111/j.1551-2916.2011.04468.x

    Article  Google Scholar 

  12. Qin Y, Zhang J, Tan Y et al (2014) Domain configuration and piezoelectric properties of (K0.50Na0.50)1−xLix(Nb0.80Ta0.20)O3 ceramics. J Eur Ceram Soc 34:4177–4184. doi:10.1016/j.jeurceramsoc.2014.07.026

    Article  Google Scholar 

  13. Wu DW, Chen RM, Zhou QF et al (2009) Lead-free KNLNT piezoelectric ceramics for high-frequency ultrasonic transducer application. Ultrasonics 49:395–398. doi:10.1016/j.ultras.2008.11.003

    Article  Google Scholar 

  14. Chang RC, Chu SY, Lin YF et al (2007) An investigation of (Na0.5K0.5)NbO3-CaTiO3 based lead-free ceramics and surface acoustic wave devices. J Eur Ceram Soc 27:4453–4460. doi:10.1016/j.jeurceramsoc.2007.02.218

    Article  Google Scholar 

  15. Chang R-C, Chu S-Y, Wong Y-P et al (2007) Properties of (Na0.5K0.5)NbO3–SrTiO3 based lead-free ceramics and surface acoustic wave devices. Sens Actuators A 136:267–272. doi:10.1016/j.sna.2006.11.002

    Article  Google Scholar 

  16. Dantsiger AY, Razumovskaya ON, Reznichenko LA et al (2001) Multicomponent systems of ferroelectric complex oxides: physics, crystal chemistry technology. Aspects of the design of active materials. Rostov State University, Rostov-on-Don

    Google Scholar 

  17. Lin D, Zheng Q, Kwok KW et al (2010) Dielectric and piezoelectric properties of MnO2-doped K0.5Na0.5Nb0.92Sb0.08O3 lead-free ceramics. J Mater Sci 21:649–655. doi:10.1007/s10854-009-9971-7

    Google Scholar 

  18. Azough F, Wegrzyn M, Freer R et al (2011) Microstructure and piezoelectric properties of CuO added (K, Na, Li)NbO3 lead-free piezoelectric ceramics. J Eur Ceram Soc 31:569–576. doi:10.1016/j.jeurceramsoc.2010.10.033

    Article  Google Scholar 

  19. Zhao P, Zhang B-P, Li J-F (2007) High piezoelectric d33 coefficient in Li-modified lead-free (Na, K)NbO3ceramics sintered at optimal temperature. Appl Phys Lett 90:242909. doi:10.1063/1.2748088

    Article  Google Scholar 

  20. Wu W, Chen M, Ding Y, Liu Ch (2014) Phase structure and electrical properties of Yb and Mn co-substituted (K0.48Na0.52)NbO3 lead-free piezoelectric ceramics. J Alloys Compd 588:496–501. doi:10.1016/j.jallcom.2013.11.057

    Article  Google Scholar 

  21. Du H, Ya Huang, Tang H et al (2013) Dielectric and piezoelectric properties of SrZrO3−modified (K0.45Na0.51Li0.04)(Nb0.90Ta0.04Sb0.06)O3 lead-free piezoceramics. Mater Lett 106:141–144. doi:10.1016/j.matlet.2013.04.052

    Article  Google Scholar 

  22. Liu Ch, Xiao D, Huang T et al (2014) Composition induced rhombohedral–tetragonal phase boundary in BaZrO3 modified (K0.445Na0.50Li0.055)NbO3 lead-freeceramics. Mater Lett 120:275–278. doi:10.1016/j.matlet.2014.01.096

    Article  Google Scholar 

  23. Zhou J, Ma Q, Wang P et al (2014) Influence of rare-earth Nd, Dy, and Ho doping on structural and electrical properties of (Na0.53K0.47)0.942Li0.058NbO3 based lead-free piezoceramics. Ceram Int 40B:2451–2459. doi:10.1016/j.ceramint.2013.08.020

    Article  Google Scholar 

  24. Rai R, Rani R, Sharma S, Kholkin AL (2013) Influence of Li and La content on phase structures and electrical properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J Alloys Compd 577:575–580. doi:10.1016/j.jallcom.2013.06.139

    Article  Google Scholar 

  25. Jia Y, Wei Y, Wu Zh et al (2014) Effects of compositional changes on luminescence of lead-free Eu3+-doped K1−xNaxNbO3 piezoelectric ceramics. J Alloys Compd 586:66–68. doi:10.1016/j.jallcom.2013.10.032

    Article  Google Scholar 

  26. Taub J, Ramajo L, Castro MS (2013) Phase structure and piezoelectric properties of Ca- and Ba-doped K1/2Na1/2NbO3 lead-free ceramics. Ceram Int 39:3555–3561. doi:10.1016/j.ceramint.2012.10.181

    Article  Google Scholar 

  27. Bafandeh MR, Gharahkhani R, Lee J-Sh (2014) Enhanced electric field induced strain in SrTiO3 modified (K, Na)NbO3-based piezoceramics. J Alloys Compd 602:285–289. doi:10.1016/j.ceramint.2014.05.070

    Article  Google Scholar 

  28. Lu Sh, Xu Zh, Zuo R (2014) Comparative study of the effect of domain structures on piezoelectric properties in three typical Pb-free piezoceramics. Ceram Int 40:13565–13571. doi:10.1016/j.ceramint.2014.05.070

    Article  Google Scholar 

  29. Fesenko EG (1972) Perovskite family and ferroelectricity. Atomizdat, Moscow

    Google Scholar 

  30. Umanskii YS (1969) X-ray analysis of metals and semiconductors. Metallurgia, Moscow

    Google Scholar 

  31. IEEE Standard on piezoelectricity (1988). doi:10.1109/IEEESTD.1988.79638

  32. Okazaki K (1969) Ceramic engineering for dielectrics. Zinatne, Tokio

    Google Scholar 

  33. Razumovskaya ON, Devlikanova RU, Belyaev IN, Tokmyanina TB (1976) Thermogravimetric analysis of Pb2NbMnO6 and Pb2WMnO6. Izv RAN USSR. Neorg Mater 12:471–474

    Google Scholar 

  34. Reznichenko LA, Shilkina LA, Gagarina ES et al (2004) Crystallographic shear in niobium oxides of different compositions. Crystallogr Rep 49:820–827. doi:10.1134/1.1803313

    Article  Google Scholar 

  35. Rao CNR, Gopalakrishnan J (1997) New direction in solids state chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  36. Ginier A (1961) X-ray analysis of crystals. Publishing House of Physics and Mathematics, Moscow

    Google Scholar 

  37. Cotton FA, Wilkinson G (1962) Advanced inorganic chemistry. Interscience Publishers, New York

    Google Scholar 

  38. Mandelkorn L (1971) Non-stoichiometric compounds. Khimia, Moscow

    Google Scholar 

  39. Ormont BF (1982) Introduction into physical chemistry and crystal chemistry of semiconductors. Vysshaya Shkola, Moscow

    Google Scholar 

  40. Narai-Sabo I (1969) Inorganic crystal chemistry. Academy of Sciences of Hungary, Budapest

    Google Scholar 

  41. Nikolskii BP, Grigorov ON, Pozin ME (1963) Guidebook of chemist. Main properties of inorganic and organic compounds. State R&D publishing house of chemical literature, Moscow-Leningrad

    Google Scholar 

  42. Stromberg AG, Semchenko DP (1974) Physical chemistry. Vysshaya Shkola, Moscow

    Google Scholar 

  43. Liu Y, Huang Y, Du H et al (2010) Crystal structure and properties of K0.5Na0.5NbO3–Bi0.5Na0.5TiO3–LiSbO3 lead-free piezoelectric ceramics. J Alloys Compd 506:407–411. doi:10.1016/j.jallcom.2010.07.017

    Article  Google Scholar 

  44. Wang Y, Qibin L, Zhao F (2010) Phase transition behavior and electrical properties of [(K0.50Na0.50)1−xAgx](Nb1−xTax)O3 lead-free ceramics. J Alloys Compd 489:175–178. doi:10.1016/j.jallcom.2009.09.047

    Article  Google Scholar 

  45. Du H, Tang F, Luo F et al (2007) Influence of sintering temperature on piezoelectric properties of (K0.5Na0.5)NbO3–LiNbO3 lead-free piezoelectric ceramics. Mater Res Bull 42:1594–1601. doi:10.1016/j.materresbull.2006.11.043

    Article  Google Scholar 

  46. Xu C, Lin D, Kwok KW (2008) Electrical properties of (K0.5Na0.5)1−x AgxNbO3 lead-free piezoelectric ceramics. J Mater Sci Mater Electron 19:1054–1057. doi:10.1007/s10854-007-9458-3

    Article  Google Scholar 

  47. Reznichenko LA, Dantsiger AY, Razumovskaya ON et al (2000) Ferroelectric elastance of sodium niobate–lithium niobate solid solutions in relation to A–O bond covalence. Tech Phys 45:1437–1440. doi:10.1134/1.1325026

    Article  Google Scholar 

  48. Fesenko EG, Dantsiger AY, Razumovskaya ON (1983) New piezoceramic materials. Publishing House of Rostov State University, Rostov-on-Don

    Google Scholar 

  49. Povarennykh AS (1962) On application of electronegativeness of elements in crystal chemistry and mineralogy. Part 1. AN UkrSSR, Kiev

  50. Dantsiger AY, Borodin VZ, Reznitchenko LA et al (2000) The effect of space charge and crystallite size on the formation of properties of ferropiezoceramic materials. Tech Phys 45:563–565. doi:10.1134/1.1259677

    Article  Google Scholar 

  51. Skulski R, Dudek J, Kupryianov MF (1997) The investigations of the R3c R3m phase transition in Pzt-Type ceramics. correlation with ordering effects. Ferroelectrics 192:339–344. doi:10.1080/00150199708216209

    Article  Google Scholar 

  52. Vezzoli GC (1982) Electrical properties of NbO2 and Nb2O5 at elevated temperature in air and flowing argon. Phys Rev B 26:3954–3957. doi:10.1103/PhysRevB.26.3954

    Article  Google Scholar 

  53. Reznichenko LA, Shilkina LA, Gagarina ES et al (2003) Structural instabilities, incommensurate modulations and P and Q phases in sodium niobate in the temperature range 300–500 K. Crystallogr Rep 48:448–456. doi:10.1134/1.1578130

    Article  Google Scholar 

  54. Reznichenko LA, Akhnazarova VV, Shilkina LA et al (2009) Invar effect in n-Nb2O5, αht-Nb2O5, and L-Nb2O5. Crystallogr Rep 54:483–491. doi:10.1134/S1063774509030183

    Article  Google Scholar 

Download references

Acknowledgements

The analytic experiments for this work have been performed on the equipment provided by the Collective use center “Electromagnetic, electromechanical and thermal properties of solids” of the Research Institute of Physics, Southern Federal University. This work was supported by the Ministry of Science and Education of Russian Federation, under the grant of the President of Russian Federation number MK-3232.2015.2; under the State Task project numbers 1927 (213.01-11/2014-21), 3.1246.2014/К (213.01-11/2014-66PCh), 213.01-2014/012-VG; and the Southern Federal University, Order No17738 from 18.12.2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Pavelko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abubakarov, A.G., Pavelko, A.A., Sadykov, K.A. et al. Influence of CuO, MnO2, NiO, Bi2O3, and Fe2O3 modifiers on the crystalline structure and electrophysical properties of (Na,Li)NbO3 solid solutions. J Mater Sci 52, 2142–2157 (2017). https://doi.org/10.1007/s10853-016-0502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0502-7

Keywords

Navigation