Skip to main content
Log in

Mechanochemical synthesis and in vitro studies of chitosan-coated InAs/ZnS mixed nanocrystals

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, InAs/ZnS mixed nanocrystals were synthesized by dry high-energy milling approach in the first step. The obtained nanocrystals were characterized from structural point of view by X-ray diffraction analysis and Raman spectroscopy, and from the morphological point of view by scanning electron microscopy. In the next step, the nanocrystals were subjected to wet ultra-fine milling in order to obtain a nanosuspension of chitosan-coated InAs/ZnS nanocrystals with bio-imaging properties. The stability of the nanosuspension was examined by zeta potential and particle size distribution measurements. The prepared nanosuspension was stable with high values of zeta potential. Its optical properties were also studied using UV–Vis and PL spectroscopies. The determined fluorescent properties confirming the potential in bio-imaging applications were verified on cancer cell lines Caco-2, HCT116, HeLa, and MCF7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Yang MJ, Wang FC, Yang CH, Bennett BR, Do TQ (1996) A composite quantum well field-effect transistor. Appl Phys Lett 69:85–87

    Article  Google Scholar 

  2. Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128:2526–2527

    Article  Google Scholar 

  3. Allen PM, Liu WH, Chauhan VP, Lee J, Ting AY, Fukumura D et al (2010) InAs(ZnCdS) quantum dots optimized for biological imaging in the near-infrared. J Am Chem Soc 132:470–471

    Article  Google Scholar 

  4. Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV (2009) Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett 9:2354–2359

    Article  Google Scholar 

  5. Kumar C (2010) Semiconductor nanomaterials. Wiley, Weinheim

    Google Scholar 

  6. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic apolymer in biomedical applications. Prog Polym Sci 36:981–1014

    Article  Google Scholar 

  7. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232

    Article  Google Scholar 

  8. Fan HL, Wang LL, Zhao KK, Li N, Shi ZJ, Ge ZG et al (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11:2345–2351

    Article  Google Scholar 

  9. Lillo CR, Romero JJ, Portoles ML, Diez RP, Caregnato P, Gonzalez MC (2015) Organic coating of 1–2 nm-size silicon nanoparticles: effect on particle properties. Nano Res 8:2047–2062

    Article  Google Scholar 

  10. Rivero PJ, Urrutia A, Goicoechea J, Zamarreno CR, Arregui FJ, Matias IR (2011) An antibacterial coating based on a polymer/sol–gel hybrid matrix loaded with silver nanoparticles. Nanosc Res Lett 6:1

    Article  Google Scholar 

  11. Nilsson PT, Eriksson AC, Ludvigsson L, Messing ME, Nordin EZ, Gudmundsson A et al (2015) In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry. Nano Res 8:3780–3795

    Article  Google Scholar 

  12. Balaz P, Achimovicova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado JM et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637

    Article  Google Scholar 

  13. Zyryanov VV, Ponomareva VG, Lavrova GV (2006) Preparation, structure, and electrical conductivity of calcium-antimonate-based materials. Inorg Mater 42:410–417

    Article  Google Scholar 

  14. Soiron S, Rougier A, Aymard L, Tarascon JM (2001) Mechanochemical synthesis of Li–Mn–O spinels: positive electrode for lithium batteries. J Power Sources 97–8:402–405

    Article  Google Scholar 

  15. Hallmann S, Fink MJ, Mitchell BS (2011) The mechanochemical formation of functionalized semiconductor nanoparticles for biological, electronic and superhydrophobic surface applications. In: Lu K, Manjooran N, Radovic M, Medvedovski E, Olevsky EA, Li C, Singh G, Chopra N, Pickrell G (eds) Advances in Nanomaterials and Nanostructures, Vol 229. John Wiley & Sons, Inc., Hoboken, NJ. doi:10.1002/9781118144602.ch13

    Google Scholar 

  16. Senna M, Myers N, Aimable A, Laporte V, Pulgarin C, Baghriche O et al (2013) Modification of titania particles for photocatalytic antibacterial activity via a colloidal route with glycine and subsequent annealing. J Mater Res 28:354–361

    Article  Google Scholar 

  17. Balaz P, Balaz M, Caplovicova M, Zorkovska A, Caplovic L, Psotka M (2014) The dual role of sulfur-containing amino acids in the synthesis of IV–VI semiconductor nanocrystals: a mechanochemical approach. Faraday Discuss 170:169–179

    Article  Google Scholar 

  18. Bujnakova Z, Balaz P, Caplovicova M, Caplovic L, Kovac J, Zorkovska A (2015) Mechanochemical synthesis of InAs nanocrystals. Mater Lett 159:474–477

    Article  Google Scholar 

  19. Serrano J, Cantarero A, Cardona M, Garro N, Lauck R, Tallman RE et al (2004) Raman scattering in beta-ZnS. Phys Rev B 69:014301

    Article  Google Scholar 

  20. Arguello CA, Rousseau DL, Porto SPS (1969) First-order Raman effect in wurtzite-type crystals. Phys Rev 181:1351

    Article  Google Scholar 

  21. Schneider J, Kirby RD (1972) Raman scattering from ZnS polytypes. Phys Rev B 6:1290

    Article  Google Scholar 

  22. Ebisuzaki Y, Nicol MJ (1972) Raman spectrum of hexagonal zinc sulfide at high pressures. J Phys Chem Solids 33:763–766

    Article  Google Scholar 

  23. Brafman O, Mitra SS (1968) Raman effect in wurtzite- and zinc-blende-type ZnS single crystals. Phys Rev 171:931

    Article  Google Scholar 

  24. Li T, Gao L, Lei W, Guo L, Yang T, Chen Y et al (2013) Raman study on zinc-blende single InAs nanowire grown on Si (111) substrate. Nanosc Res Lett 8:1–7

    Article  Google Scholar 

  25. Cheetham KJ, Carrington PJ, Krier A, Patel II, Martin FL (2012) Raman spectroscopy of pentanary GaInAsSbP narrow gap alloys lattice matched to InAs and GaSb. Semicond Sci Technol 27:015004

    Article  Google Scholar 

  26. Alim KA, Fonoberov VA, Balandin AA (2005) Origin of the optical phonon frequency shifts in ZnO quantum dots. Appl Phys Lett 86:053103

    Article  Google Scholar 

  27. Bajaj G, Van Alstine WG, Yeo Y (2012) Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS One 7:e30899

    Article  Google Scholar 

  28. Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomed 1:117–128

    Article  Google Scholar 

  29. Ramanery FP, Mansur AAP, Mansur HS (2013) One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates. Nanoscale Res Lett 8:512. doi:10.1186/1556-276X-8-512

    Article  Google Scholar 

  30. Pawlak A, Mucha A (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396:153–166

    Article  Google Scholar 

  31. Bhattarai SR, Kc RB, Kim SY, Sharma M, Khil MS, Hwang PH et al (2008) N-hexanoyl chitosan stabilized magnetic nanoparticles: implication for cellular labeling and magnetic resonance imaging. J Nanobiotechnol 6:1

    Article  Google Scholar 

  32. Ahmad T, Bae H, Iqbal Y, Rhee I, Hong S, Chang Y et al (2015) Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging. J Magn Magn Mater 381:151–157

    Article  Google Scholar 

  33. Salehizadeh H, Hekmatian E, Sadeghi M, Kennedy K (2012) Synthesis and characterization of core-shell Fe3O4–gold–chitosan nanostructure. J Nanobiotechnol 10:1

    Article  Google Scholar 

  34. Kumirska J, Czerwicka M, Kaczynski Z, Bychowska A, Brzozowski K, Thoming J et al (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8:1567–1636

    Article  Google Scholar 

  35. Brus LE (1984) Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  Google Scholar 

  36. Viswanath R, Naik HSB, Somalanaik YKG, Neelanjeneallu PKP, Harish KN, Prabhakara MC (2014) Studies on characterization, optical absorption, and photoluminescene of yttrium doped ZnS nanoparticles. J Nanotechnol 2014:8

    Article  Google Scholar 

  37. Wageh S, Ling ZS, Xu-Rong X (2003) Growth and optical properties of colloidal ZnS nanoparticles. J Cryst Growth 255:332–337

    Article  Google Scholar 

  38. Chen R, Li DH, Liu B, Peng ZP, Gurzadyan GG, Xiong QH et al (2010) Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature. Nano Lett 10:4956–4961

    Article  Google Scholar 

  39. Balaz P, Bujnakova Z, Dutkova E, Balaz M, Zorkovska A, Kovac J et al (2015) Mixed core CdS@ZnS nanocrystals: synthesis, cadmium dissolution and cancer cell management. In: Rene ER, Bhattarai S, Nancharaiah YV, Lens PNL (eds) 4th international conference on research frontiers in chalcogen cycle science and technology. Delft. pp 7–11

  40. Wang X, Li XY (2014) Photocatalytic hydrogen generation with simultaneous organic degradation by a visible light-driven CdS/ZnS film catalyst. Mater Sci Eng B 181:86–92

    Article  Google Scholar 

  41. Zucker RM, Massaro EJ, Sanders KM, Degn LL, Boyes WK (2010) Detection of TiO2 nanoparticles in cells by flow cytometry. Cytom Part A 77A:677–685

    Article  Google Scholar 

  42. Zucker RM, Daniel KM, Massaro EJ, Karafas SJ, Degn LL, Boyes WK (2013) Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence. Cytom Part A 83:962–972

    Google Scholar 

  43. Bancos S, Tsai D-H, Hackley V, Weaver JL, Tyner KM (2012) Evaluation of viability and proliferation profiles on macrophages treated with silica nanoparticles in vitro via plate-based, flow cytometry, and coulter counter assays. ISRN Nanotechnol 2012:11

    Article  Google Scholar 

  44. Xu A, Chai YF, Nohmi T, Hei TK (2009) Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 6:1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-14-0103 and by the Slovak Grant Agency VEGA (project 2/0027/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenka Bujňáková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bujňáková, Z., Dutková, E., Zorkovská, A. et al. Mechanochemical synthesis and in vitro studies of chitosan-coated InAs/ZnS mixed nanocrystals. J Mater Sci 52, 721–735 (2017). https://doi.org/10.1007/s10853-016-0366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0366-x

Keywords

Navigation